CheatMenuSA/Depend/zip/miniz.h
2021-04-08 02:35:21 +06:00

6875 lines
266 KiB
C

/*
miniz.c v1.15 - public domain deflate/inflate, zlib-subset, ZIP
reading/writing/appending, PNG writing See "unlicense" statement at the end
of this file. Rich Geldreich <richgel99@gmail.com>, last updated Oct. 13,
2013 Implements RFC 1950: http://www.ietf.org/rfc/rfc1950.txt and RFC 1951:
http://www.ietf.org/rfc/rfc1951.txt
Most API's defined in miniz.c are optional. For example, to disable the
archive related functions just define MINIZ_NO_ARCHIVE_APIS, or to get rid of
all stdio usage define MINIZ_NO_STDIO (see the list below for more macros).
* Change History
10/13/13 v1.15 r4 - Interim bugfix release while I work on the next major
release with Zip64 support (almost there!):
- Critical fix for the MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY bug
(thanks kahmyong.moon@hp.com) which could cause locate files to not find
files. This bug would only have occured in earlier versions if you explicitly
used this flag, OR if you used mz_zip_extract_archive_file_to_heap() or
mz_zip_add_mem_to_archive_file_in_place() (which used this flag). If you
can't switch to v1.15 but want to fix this bug, just remove the uses of this
flag from both helper funcs (and of course don't use the flag).
- Bugfix in mz_zip_reader_extract_to_mem_no_alloc() from kymoon when
pUser_read_buf is not NULL and compressed size is > uncompressed size
- Fixing mz_zip_reader_extract_*() funcs so they don't try to extract
compressed data from directory entries, to account for weird zipfiles which
contain zero-size compressed data on dir entries. Hopefully this fix won't
cause any issues on weird zip archives, because it assumes the low 16-bits of
zip external attributes are DOS attributes (which I believe they always are
in practice).
- Fixing mz_zip_reader_is_file_a_directory() so it doesn't check the
internal attributes, just the filename and external attributes
- mz_zip_reader_init_file() - missing MZ_FCLOSE() call if the seek failed
- Added cmake support for Linux builds which builds all the examples,
tested with clang v3.3 and gcc v4.6.
- Clang fix for tdefl_write_image_to_png_file_in_memory() from toffaletti
- Merged MZ_FORCEINLINE fix from hdeanclark
- Fix <time.h> include before config #ifdef, thanks emil.brink
- Added tdefl_write_image_to_png_file_in_memory_ex(): supports Y flipping
(super useful for OpenGL apps), and explicit control over the compression
level (so you can set it to 1 for real-time compression).
- Merged in some compiler fixes from paulharris's github repro.
- Retested this build under Windows (VS 2010, including static analysis),
tcc 0.9.26, gcc v4.6 and clang v3.3.
- Added example6.c, which dumps an image of the mandelbrot set to a PNG
file.
- Modified example2 to help test the
MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY flag more.
- In r3: Bugfix to mz_zip_writer_add_file() found during merge: Fix
possible src file fclose() leak if alignment bytes+local header file write
faiiled
- In r4: Minor bugfix to mz_zip_writer_add_from_zip_reader(): Was pushing the
wrong central dir header offset, appears harmless in this release, but it
became a problem in the zip64 branch 5/20/12 v1.14 - MinGW32/64 GCC 4.6.1
compiler fixes: added MZ_FORCEINLINE, #include <time.h> (thanks fermtect).
5/19/12 v1.13 - From jason@cornsyrup.org and kelwert@mtu.edu - Fix
mz_crc32() so it doesn't compute the wrong CRC-32's when mz_ulong is 64-bit.
- Temporarily/locally slammed in "typedef unsigned long mz_ulong" and
re-ran a randomized regression test on ~500k files.
- Eliminated a bunch of warnings when compiling with GCC 32-bit/64.
- Ran all examples, miniz.c, and tinfl.c through MSVC 2008's /analyze
(static analysis) option and fixed all warnings (except for the silly "Use of
the comma-operator in a tested expression.." analysis warning, which I
purposely use to work around a MSVC compiler warning).
- Created 32-bit and 64-bit Codeblocks projects/workspace. Built and
tested Linux executables. The codeblocks workspace is compatible with
Linux+Win32/x64.
- Added miniz_tester solution/project, which is a useful little app
derived from LZHAM's tester app that I use as part of the regression test.
- Ran miniz.c and tinfl.c through another series of regression testing on
~500,000 files and archives.
- Modified example5.c so it purposely disables a bunch of high-level
functionality (MINIZ_NO_STDIO, etc.). (Thanks to corysama for the
MINIZ_NO_STDIO bug report.)
- Fix ftell() usage in examples so they exit with an error on files which
are too large (a limitation of the examples, not miniz itself). 4/12/12 v1.12
- More comments, added low-level example5.c, fixed a couple minor
level_and_flags issues in the archive API's. level_and_flags can now be set
to MZ_DEFAULT_COMPRESSION. Thanks to Bruce Dawson <bruced@valvesoftware.com>
for the feedback/bug report. 5/28/11 v1.11 - Added statement from
unlicense.org 5/27/11 v1.10 - Substantial compressor optimizations:
- Level 1 is now ~4x faster than before. The L1 compressor's throughput
now varies between 70-110MB/sec. on a
- Core i7 (actual throughput varies depending on the type of data, and x64
vs. x86).
- Improved baseline L2-L9 compression perf. Also, greatly improved
compression perf. issues on some file types.
- Refactored the compression code for better readability and
maintainability.
- Added level 10 compression level (L10 has slightly better ratio than
level 9, but could have a potentially large drop in throughput on some
files). 5/15/11 v1.09 - Initial stable release.
* Low-level Deflate/Inflate implementation notes:
Compression: Use the "tdefl" API's. The compressor supports raw, static,
and dynamic blocks, lazy or greedy parsing, match length filtering, RLE-only,
and Huffman-only streams. It performs and compresses approximately as well as
zlib.
Decompression: Use the "tinfl" API's. The entire decompressor is
implemented as a single function coroutine: see tinfl_decompress(). It
supports decompression into a 32KB (or larger power of 2) wrapping buffer, or
into a memory block large enough to hold the entire file.
The low-level tdefl/tinfl API's do not make any use of dynamic memory
allocation.
* zlib-style API notes:
miniz.c implements a fairly large subset of zlib. There's enough
functionality present for it to be a drop-in zlib replacement in many apps:
The z_stream struct, optional memory allocation callbacks
deflateInit/deflateInit2/deflate/deflateReset/deflateEnd/deflateBound
inflateInit/inflateInit2/inflate/inflateEnd
compress, compress2, compressBound, uncompress
CRC-32, Adler-32 - Using modern, minimal code size, CPU cache friendly
routines. Supports raw deflate streams or standard zlib streams with adler-32
checking.
Limitations:
The callback API's are not implemented yet. No support for gzip headers or
zlib static dictionaries. I've tried to closely emulate zlib's various
flavors of stream flushing and return status codes, but there are no
guarantees that miniz.c pulls this off perfectly.
* PNG writing: See the tdefl_write_image_to_png_file_in_memory() function,
originally written by Alex Evans. Supports 1-4 bytes/pixel images.
* ZIP archive API notes:
The ZIP archive API's where designed with simplicity and efficiency in
mind, with just enough abstraction to get the job done with minimal fuss.
There are simple API's to retrieve file information, read files from existing
archives, create new archives, append new files to existing archives, or
clone archive data from one archive to another. It supports archives located
in memory or the heap, on disk (using stdio.h), or you can specify custom
file read/write callbacks.
- Archive reading: Just call this function to read a single file from a
disk archive:
void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename, const
char *pArchive_name, size_t *pSize, mz_uint zip_flags);
For more complex cases, use the "mz_zip_reader" functions. Upon opening an
archive, the entire central directory is located and read as-is into memory,
and subsequent file access only occurs when reading individual files.
- Archives file scanning: The simple way is to use this function to scan a
loaded archive for a specific file:
int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName,
const char *pComment, mz_uint flags);
The locate operation can optionally check file comments too, which (as one
example) can be used to identify multiple versions of the same file in an
archive. This function uses a simple linear search through the central
directory, so it's not very fast.
Alternately, you can iterate through all the files in an archive (using
mz_zip_reader_get_num_files()) and retrieve detailed info on each file by
calling mz_zip_reader_file_stat().
- Archive creation: Use the "mz_zip_writer" functions. The ZIP writer
immediately writes compressed file data to disk and builds an exact image of
the central directory in memory. The central directory image is written all
at once at the end of the archive file when the archive is finalized.
The archive writer can optionally align each file's local header and file
data to any power of 2 alignment, which can be useful when the archive will
be read from optical media. Also, the writer supports placing arbitrary data
blobs at the very beginning of ZIP archives. Archives written using either
feature are still readable by any ZIP tool.
- Archive appending: The simple way to add a single file to an archive is
to call this function:
mz_bool mz_zip_add_mem_to_archive_file_in_place(const char *pZip_filename,
const char *pArchive_name, const void *pBuf, size_t buf_size, const void
*pComment, mz_uint16 comment_size, mz_uint level_and_flags);
The archive will be created if it doesn't already exist, otherwise it'll be
appended to. Note the appending is done in-place and is not an atomic
operation, so if something goes wrong during the operation it's possible the
archive could be left without a central directory (although the local file
headers and file data will be fine, so the archive will be recoverable).
For more complex archive modification scenarios:
1. The safest way is to use a mz_zip_reader to read the existing archive,
cloning only those bits you want to preserve into a new archive using using
the mz_zip_writer_add_from_zip_reader() function (which compiles the
compressed file data as-is). When you're done, delete the old archive and
rename the newly written archive, and you're done. This is safe but requires
a bunch of temporary disk space or heap memory.
2. Or, you can convert an mz_zip_reader in-place to an mz_zip_writer using
mz_zip_writer_init_from_reader(), append new files as needed, then finalize
the archive which will write an updated central directory to the original
archive. (This is basically what mz_zip_add_mem_to_archive_file_in_place()
does.) There's a possibility that the archive's central directory could be
lost with this method if anything goes wrong, though.
- ZIP archive support limitations:
No zip64 or spanning support. Extraction functions can only handle
unencrypted, stored or deflated files. Requires streams capable of seeking.
* This is a header file library, like stb_image.c. To get only a header file,
either cut and paste the below header, or create miniz.h, #define
MINIZ_HEADER_FILE_ONLY, and then include miniz.c from it.
* Important: For best perf. be sure to customize the below macros for your
target platform: #define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1 #define
MINIZ_LITTLE_ENDIAN 1 #define MINIZ_HAS_64BIT_REGISTERS 1
* On platforms using glibc, Be sure to "#define _LARGEFILE64_SOURCE 1" before
including miniz.c to ensure miniz uses the 64-bit variants: fopen64(),
stat64(), etc. Otherwise you won't be able to process large files (i.e.
32-bit stat() fails for me on files > 0x7FFFFFFF bytes).
*/
#ifndef MINIZ_HEADER_INCLUDED
#define MINIZ_HEADER_INCLUDED
#include <stdint.h>
#include <stdlib.h>
// Defines to completely disable specific portions of miniz.c:
// If all macros here are defined the only functionality remaining will be
// CRC-32, adler-32, tinfl, and tdefl.
// Define MINIZ_NO_STDIO to disable all usage and any functions which rely on
// stdio for file I/O.
//#define MINIZ_NO_STDIO
// If MINIZ_NO_TIME is specified then the ZIP archive functions will not be able
// to get the current time, or get/set file times, and the C run-time funcs that
// get/set times won't be called. The current downside is the times written to
// your archives will be from 1979.
//#define MINIZ_NO_TIME
// Define MINIZ_NO_ARCHIVE_APIS to disable all ZIP archive API's.
//#define MINIZ_NO_ARCHIVE_APIS
// Define MINIZ_NO_ARCHIVE_APIS to disable all writing related ZIP archive
// API's.
//#define MINIZ_NO_ARCHIVE_WRITING_APIS
// Define MINIZ_NO_ZLIB_APIS to remove all ZLIB-style compression/decompression
// API's.
//#define MINIZ_NO_ZLIB_APIS
// Define MINIZ_NO_ZLIB_COMPATIBLE_NAME to disable zlib names, to prevent
// conflicts against stock zlib.
//#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES
// Define MINIZ_NO_MALLOC to disable all calls to malloc, free, and realloc.
// Note if MINIZ_NO_MALLOC is defined then the user must always provide custom
// user alloc/free/realloc callbacks to the zlib and archive API's, and a few
// stand-alone helper API's which don't provide custom user functions (such as
// tdefl_compress_mem_to_heap() and tinfl_decompress_mem_to_heap()) won't work.
//#define MINIZ_NO_MALLOC
#if defined(__TINYC__) && (defined(__linux) || defined(__linux__))
// TODO: Work around "error: include file 'sys\utime.h' when compiling with tcc
// on Linux
#define MINIZ_NO_TIME
#endif
#if !defined(MINIZ_NO_TIME) && !defined(MINIZ_NO_ARCHIVE_APIS)
#include <time.h>
#endif
#if defined(_M_IX86) || defined(_M_X64) || defined(__i386__) || \
defined(__i386) || defined(__i486__) || defined(__i486) || \
defined(i386) || defined(__ia64__) || defined(__x86_64__)
// MINIZ_X86_OR_X64_CPU is only used to help set the below macros.
#define MINIZ_X86_OR_X64_CPU 1
#endif
#if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) || MINIZ_X86_OR_X64_CPU
// Set MINIZ_LITTLE_ENDIAN to 1 if the processor is little endian.
#define MINIZ_LITTLE_ENDIAN 1
#endif
/* Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES only if not set */
#if !defined(MINIZ_USE_UNALIGNED_LOADS_AND_STORES)
#if MINIZ_X86_OR_X64_CPU
/* Set MINIZ_USE_UNALIGNED_LOADS_AND_STORES to 1 on CPU's that permit efficient
* integer loads and stores from unaligned addresses. */
#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 1
#define MINIZ_UNALIGNED_USE_MEMCPY
#else
#define MINIZ_USE_UNALIGNED_LOADS_AND_STORES 0
#endif
#endif
#if defined(_M_X64) || defined(_WIN64) || defined(__MINGW64__) || \
defined(_LP64) || defined(__LP64__) || defined(__ia64__) || \
defined(__x86_64__)
// Set MINIZ_HAS_64BIT_REGISTERS to 1 if operations on 64-bit integers are
// reasonably fast (and don't involve compiler generated calls to helper
// functions).
#define MINIZ_HAS_64BIT_REGISTERS 1
#endif
#ifdef __APPLE__
#define ftello64 ftello
#define fseeko64 fseeko
#define fopen64 fopen
#define freopen64 freopen
// Darwin OSX
#define MZ_PLATFORM 19
#endif
#ifndef MZ_PLATFORM
#if defined(_WIN64) || defined(_WIN32) || defined(__WIN32__)
#define MZ_PLATFORM 0
#else
// UNIX
#define MZ_PLATFORM 3
#endif
#endif
#ifdef __cplusplus
extern "C" {
#endif
// ------------------- zlib-style API Definitions.
// For more compatibility with zlib, miniz.c uses unsigned long for some
// parameters/struct members. Beware: mz_ulong can be either 32 or 64-bits!
typedef unsigned long mz_ulong;
// mz_free() internally uses the MZ_FREE() macro (which by default calls free()
// unless you've modified the MZ_MALLOC macro) to release a block allocated from
// the heap.
void mz_free(void *p);
#define MZ_ADLER32_INIT (1)
// mz_adler32() returns the initial adler-32 value to use when called with
// ptr==NULL.
mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len);
#define MZ_CRC32_INIT (0)
// mz_crc32() returns the initial CRC-32 value to use when called with
// ptr==NULL.
mz_ulong mz_crc32(mz_ulong crc, const unsigned char *ptr, size_t buf_len);
// Compression strategies.
enum {
MZ_DEFAULT_STRATEGY = 0,
MZ_FILTERED = 1,
MZ_HUFFMAN_ONLY = 2,
MZ_RLE = 3,
MZ_FIXED = 4
};
/* miniz error codes. Be sure to update mz_zip_get_error_string() if you add or
* modify this enum. */
typedef enum {
MZ_ZIP_NO_ERROR = 0,
MZ_ZIP_UNDEFINED_ERROR,
MZ_ZIP_TOO_MANY_FILES,
MZ_ZIP_FILE_TOO_LARGE,
MZ_ZIP_UNSUPPORTED_METHOD,
MZ_ZIP_UNSUPPORTED_ENCRYPTION,
MZ_ZIP_UNSUPPORTED_FEATURE,
MZ_ZIP_FAILED_FINDING_CENTRAL_DIR,
MZ_ZIP_NOT_AN_ARCHIVE,
MZ_ZIP_INVALID_HEADER_OR_CORRUPTED,
MZ_ZIP_UNSUPPORTED_MULTIDISK,
MZ_ZIP_DECOMPRESSION_FAILED,
MZ_ZIP_COMPRESSION_FAILED,
MZ_ZIP_UNEXPECTED_DECOMPRESSED_SIZE,
MZ_ZIP_CRC_CHECK_FAILED,
MZ_ZIP_UNSUPPORTED_CDIR_SIZE,
MZ_ZIP_ALLOC_FAILED,
MZ_ZIP_FILE_OPEN_FAILED,
MZ_ZIP_FILE_CREATE_FAILED,
MZ_ZIP_FILE_WRITE_FAILED,
MZ_ZIP_FILE_READ_FAILED,
MZ_ZIP_FILE_CLOSE_FAILED,
MZ_ZIP_FILE_SEEK_FAILED,
MZ_ZIP_FILE_STAT_FAILED,
MZ_ZIP_INVALID_PARAMETER,
MZ_ZIP_INVALID_FILENAME,
MZ_ZIP_BUF_TOO_SMALL,
MZ_ZIP_INTERNAL_ERROR,
MZ_ZIP_FILE_NOT_FOUND,
MZ_ZIP_ARCHIVE_TOO_LARGE,
MZ_ZIP_VALIDATION_FAILED,
MZ_ZIP_WRITE_CALLBACK_FAILED,
MZ_ZIP_TOTAL_ERRORS
} mz_zip_error;
// Method
#define MZ_DEFLATED 8
#ifndef MINIZ_NO_ZLIB_APIS
// Heap allocation callbacks.
// Note that mz_alloc_func parameter types purposely differ from zlib's:
// items/size is size_t, not unsigned long.
typedef void *(*mz_alloc_func)(void *opaque, size_t items, size_t size);
typedef void (*mz_free_func)(void *opaque, void *address);
typedef void *(*mz_realloc_func)(void *opaque, void *address, size_t items,
size_t size);
#define MZ_VERSION "9.1.15"
#define MZ_VERNUM 0x91F0
#define MZ_VER_MAJOR 9
#define MZ_VER_MINOR 1
#define MZ_VER_REVISION 15
#define MZ_VER_SUBREVISION 0
// Flush values. For typical usage you only need MZ_NO_FLUSH and MZ_FINISH. The
// other values are for advanced use (refer to the zlib docs).
enum {
MZ_NO_FLUSH = 0,
MZ_PARTIAL_FLUSH = 1,
MZ_SYNC_FLUSH = 2,
MZ_FULL_FLUSH = 3,
MZ_FINISH = 4,
MZ_BLOCK = 5
};
// Return status codes. MZ_PARAM_ERROR is non-standard.
enum {
MZ_OK = 0,
MZ_STREAM_END = 1,
MZ_NEED_DICT = 2,
MZ_ERRNO = -1,
MZ_STREAM_ERROR = -2,
MZ_DATA_ERROR = -3,
MZ_MEM_ERROR = -4,
MZ_BUF_ERROR = -5,
MZ_VERSION_ERROR = -6,
MZ_PARAM_ERROR = -10000
};
// Compression levels: 0-9 are the standard zlib-style levels, 10 is best
// possible compression (not zlib compatible, and may be very slow),
// MZ_DEFAULT_COMPRESSION=MZ_DEFAULT_LEVEL.
enum {
MZ_NO_COMPRESSION = 0,
MZ_BEST_SPEED = 1,
MZ_BEST_COMPRESSION = 9,
MZ_UBER_COMPRESSION = 10,
MZ_DEFAULT_LEVEL = 6,
MZ_DEFAULT_COMPRESSION = -1
};
// Window bits
#define MZ_DEFAULT_WINDOW_BITS 15
struct mz_internal_state;
// Compression/decompression stream struct.
typedef struct mz_stream_s {
const unsigned char *next_in; // pointer to next byte to read
unsigned int avail_in; // number of bytes available at next_in
mz_ulong total_in; // total number of bytes consumed so far
unsigned char *next_out; // pointer to next byte to write
unsigned int avail_out; // number of bytes that can be written to next_out
mz_ulong total_out; // total number of bytes produced so far
char *msg; // error msg (unused)
struct mz_internal_state *state; // internal state, allocated by zalloc/zfree
mz_alloc_func
zalloc; // optional heap allocation function (defaults to malloc)
mz_free_func zfree; // optional heap free function (defaults to free)
void *opaque; // heap alloc function user pointer
int data_type; // data_type (unused)
mz_ulong adler; // adler32 of the source or uncompressed data
mz_ulong reserved; // not used
} mz_stream;
typedef mz_stream *mz_streamp;
// Returns the version string of miniz.c.
const char *mz_version(void);
// mz_deflateInit() initializes a compressor with default options:
// Parameters:
// pStream must point to an initialized mz_stream struct.
// level must be between [MZ_NO_COMPRESSION, MZ_BEST_COMPRESSION].
// level 1 enables a specially optimized compression function that's been
// optimized purely for performance, not ratio. (This special func. is
// currently only enabled when MINIZ_USE_UNALIGNED_LOADS_AND_STORES and
// MINIZ_LITTLE_ENDIAN are defined.)
// Return values:
// MZ_OK on success.
// MZ_STREAM_ERROR if the stream is bogus.
// MZ_PARAM_ERROR if the input parameters are bogus.
// MZ_MEM_ERROR on out of memory.
int mz_deflateInit(mz_streamp pStream, int level);
// mz_deflateInit2() is like mz_deflate(), except with more control:
// Additional parameters:
// method must be MZ_DEFLATED
// window_bits must be MZ_DEFAULT_WINDOW_BITS (to wrap the deflate stream with
// zlib header/adler-32 footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate/no
// header or footer) mem_level must be between [1, 9] (it's checked but
// ignored by miniz.c)
int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits,
int mem_level, int strategy);
// Quickly resets a compressor without having to reallocate anything. Same as
// calling mz_deflateEnd() followed by mz_deflateInit()/mz_deflateInit2().
int mz_deflateReset(mz_streamp pStream);
// mz_deflate() compresses the input to output, consuming as much of the input
// and producing as much output as possible. Parameters:
// pStream is the stream to read from and write to. You must initialize/update
// the next_in, avail_in, next_out, and avail_out members. flush may be
// MZ_NO_FLUSH, MZ_PARTIAL_FLUSH/MZ_SYNC_FLUSH, MZ_FULL_FLUSH, or MZ_FINISH.
// Return values:
// MZ_OK on success (when flushing, or if more input is needed but not
// available, and/or there's more output to be written but the output buffer
// is full). MZ_STREAM_END if all input has been consumed and all output bytes
// have been written. Don't call mz_deflate() on the stream anymore.
// MZ_STREAM_ERROR if the stream is bogus.
// MZ_PARAM_ERROR if one of the parameters is invalid.
// MZ_BUF_ERROR if no forward progress is possible because the input and/or
// output buffers are empty. (Fill up the input buffer or free up some output
// space and try again.)
int mz_deflate(mz_streamp pStream, int flush);
// mz_deflateEnd() deinitializes a compressor:
// Return values:
// MZ_OK on success.
// MZ_STREAM_ERROR if the stream is bogus.
int mz_deflateEnd(mz_streamp pStream);
// mz_deflateBound() returns a (very) conservative upper bound on the amount of
// data that could be generated by deflate(), assuming flush is set to only
// MZ_NO_FLUSH or MZ_FINISH.
mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len);
// Single-call compression functions mz_compress() and mz_compress2():
// Returns MZ_OK on success, or one of the error codes from mz_deflate() on
// failure.
int mz_compress(unsigned char *pDest, mz_ulong *pDest_len,
const unsigned char *pSource, mz_ulong source_len);
int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len,
const unsigned char *pSource, mz_ulong source_len, int level);
// mz_compressBound() returns a (very) conservative upper bound on the amount of
// data that could be generated by calling mz_compress().
mz_ulong mz_compressBound(mz_ulong source_len);
// Initializes a decompressor.
int mz_inflateInit(mz_streamp pStream);
// mz_inflateInit2() is like mz_inflateInit() with an additional option that
// controls the window size and whether or not the stream has been wrapped with
// a zlib header/footer: window_bits must be MZ_DEFAULT_WINDOW_BITS (to parse
// zlib header/footer) or -MZ_DEFAULT_WINDOW_BITS (raw deflate).
int mz_inflateInit2(mz_streamp pStream, int window_bits);
// Decompresses the input stream to the output, consuming only as much of the
// input as needed, and writing as much to the output as possible. Parameters:
// pStream is the stream to read from and write to. You must initialize/update
// the next_in, avail_in, next_out, and avail_out members. flush may be
// MZ_NO_FLUSH, MZ_SYNC_FLUSH, or MZ_FINISH. On the first call, if flush is
// MZ_FINISH it's assumed the input and output buffers are both sized large
// enough to decompress the entire stream in a single call (this is slightly
// faster). MZ_FINISH implies that there are no more source bytes available
// beside what's already in the input buffer, and that the output buffer is
// large enough to hold the rest of the decompressed data.
// Return values:
// MZ_OK on success. Either more input is needed but not available, and/or
// there's more output to be written but the output buffer is full.
// MZ_STREAM_END if all needed input has been consumed and all output bytes
// have been written. For zlib streams, the adler-32 of the decompressed data
// has also been verified. MZ_STREAM_ERROR if the stream is bogus.
// MZ_DATA_ERROR if the deflate stream is invalid.
// MZ_PARAM_ERROR if one of the parameters is invalid.
// MZ_BUF_ERROR if no forward progress is possible because the input buffer is
// empty but the inflater needs more input to continue, or if the output
// buffer is not large enough. Call mz_inflate() again with more input data,
// or with more room in the output buffer (except when using single call
// decompression, described above).
int mz_inflate(mz_streamp pStream, int flush);
// Deinitializes a decompressor.
int mz_inflateEnd(mz_streamp pStream);
// Single-call decompression.
// Returns MZ_OK on success, or one of the error codes from mz_inflate() on
// failure.
int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len,
const unsigned char *pSource, mz_ulong source_len);
// Returns a string description of the specified error code, or NULL if the
// error code is invalid.
const char *mz_error(int err);
// Redefine zlib-compatible names to miniz equivalents, so miniz.c can be used
// as a drop-in replacement for the subset of zlib that miniz.c supports. Define
// MINIZ_NO_ZLIB_COMPATIBLE_NAMES to disable zlib-compatibility if you use zlib
// in the same project.
#ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES
typedef unsigned char Byte;
typedef unsigned int uInt;
typedef mz_ulong uLong;
typedef Byte Bytef;
typedef uInt uIntf;
typedef char charf;
typedef int intf;
typedef void *voidpf;
typedef uLong uLongf;
typedef void *voidp;
typedef void *const voidpc;
#define Z_NULL 0
#define Z_NO_FLUSH MZ_NO_FLUSH
#define Z_PARTIAL_FLUSH MZ_PARTIAL_FLUSH
#define Z_SYNC_FLUSH MZ_SYNC_FLUSH
#define Z_FULL_FLUSH MZ_FULL_FLUSH
#define Z_FINISH MZ_FINISH
#define Z_BLOCK MZ_BLOCK
#define Z_OK MZ_OK
#define Z_STREAM_END MZ_STREAM_END
#define Z_NEED_DICT MZ_NEED_DICT
#define Z_ERRNO MZ_ERRNO
#define Z_STREAM_ERROR MZ_STREAM_ERROR
#define Z_DATA_ERROR MZ_DATA_ERROR
#define Z_MEM_ERROR MZ_MEM_ERROR
#define Z_BUF_ERROR MZ_BUF_ERROR
#define Z_VERSION_ERROR MZ_VERSION_ERROR
#define Z_PARAM_ERROR MZ_PARAM_ERROR
#define Z_NO_COMPRESSION MZ_NO_COMPRESSION
#define Z_BEST_SPEED MZ_BEST_SPEED
#define Z_BEST_COMPRESSION MZ_BEST_COMPRESSION
#define Z_DEFAULT_COMPRESSION MZ_DEFAULT_COMPRESSION
#define Z_DEFAULT_STRATEGY MZ_DEFAULT_STRATEGY
#define Z_FILTERED MZ_FILTERED
#define Z_HUFFMAN_ONLY MZ_HUFFMAN_ONLY
#define Z_RLE MZ_RLE
#define Z_FIXED MZ_FIXED
#define Z_DEFLATED MZ_DEFLATED
#define Z_DEFAULT_WINDOW_BITS MZ_DEFAULT_WINDOW_BITS
#define alloc_func mz_alloc_func
#define free_func mz_free_func
#define internal_state mz_internal_state
#define z_stream mz_stream
#define deflateInit mz_deflateInit
#define deflateInit2 mz_deflateInit2
#define deflateReset mz_deflateReset
#define deflate mz_deflate
#define deflateEnd mz_deflateEnd
#define deflateBound mz_deflateBound
#define compress mz_compress
#define compress2 mz_compress2
#define compressBound mz_compressBound
#define inflateInit mz_inflateInit
#define inflateInit2 mz_inflateInit2
#define inflate mz_inflate
#define inflateEnd mz_inflateEnd
#define uncompress mz_uncompress
#define crc32 mz_crc32
#define adler32 mz_adler32
#define MAX_WBITS 15
#define MAX_MEM_LEVEL 9
#define zError mz_error
#define ZLIB_VERSION MZ_VERSION
#define ZLIB_VERNUM MZ_VERNUM
#define ZLIB_VER_MAJOR MZ_VER_MAJOR
#define ZLIB_VER_MINOR MZ_VER_MINOR
#define ZLIB_VER_REVISION MZ_VER_REVISION
#define ZLIB_VER_SUBREVISION MZ_VER_SUBREVISION
#define zlibVersion mz_version
#define zlib_version mz_version()
#endif // #ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES
#endif // MINIZ_NO_ZLIB_APIS
// ------------------- Types and macros
typedef unsigned char mz_uint8;
typedef signed short mz_int16;
typedef unsigned short mz_uint16;
typedef unsigned int mz_uint32;
typedef unsigned int mz_uint;
typedef long long mz_int64;
typedef unsigned long long mz_uint64;
typedef int mz_bool;
#define MZ_FALSE (0)
#define MZ_TRUE (1)
// An attempt to work around MSVC's spammy "warning C4127: conditional
// expression is constant" message.
#ifdef _MSC_VER
#define MZ_MACRO_END while (0, 0)
#else
#define MZ_MACRO_END while (0)
#endif
// ------------------- ZIP archive reading/writing
#ifndef MINIZ_NO_ARCHIVE_APIS
enum {
MZ_ZIP_MAX_IO_BUF_SIZE = 64 * 1024,
MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE = 260,
MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE = 256
};
typedef struct {
mz_uint32 m_file_index;
mz_uint32 m_central_dir_ofs;
mz_uint16 m_version_made_by;
mz_uint16 m_version_needed;
mz_uint16 m_bit_flag;
mz_uint16 m_method;
#ifndef MINIZ_NO_TIME
time_t m_time;
#endif
mz_uint32 m_crc32;
mz_uint64 m_comp_size;
mz_uint64 m_uncomp_size;
mz_uint16 m_internal_attr;
mz_uint32 m_external_attr;
mz_uint64 m_local_header_ofs;
mz_uint32 m_comment_size;
char m_filename[MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE];
char m_comment[MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE];
} mz_zip_archive_file_stat;
typedef size_t (*mz_file_read_func)(void *pOpaque, mz_uint64 file_ofs,
void *pBuf, size_t n);
typedef size_t (*mz_file_write_func)(void *pOpaque, mz_uint64 file_ofs,
const void *pBuf, size_t n);
typedef mz_bool (*mz_file_needs_keepalive)(void *pOpaque);
struct mz_zip_internal_state_tag;
typedef struct mz_zip_internal_state_tag mz_zip_internal_state;
typedef enum {
MZ_ZIP_MODE_INVALID = 0,
MZ_ZIP_MODE_READING = 1,
MZ_ZIP_MODE_WRITING = 2,
MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED = 3
} mz_zip_mode;
typedef enum {
MZ_ZIP_TYPE_INVALID = 0,
MZ_ZIP_TYPE_USER,
MZ_ZIP_TYPE_MEMORY,
MZ_ZIP_TYPE_HEAP,
MZ_ZIP_TYPE_FILE,
MZ_ZIP_TYPE_CFILE,
MZ_ZIP_TOTAL_TYPES
} mz_zip_type;
typedef struct {
mz_uint64 m_archive_size;
mz_uint64 m_central_directory_file_ofs;
/* We only support up to UINT32_MAX files in zip64 mode. */
mz_uint32 m_total_files;
mz_zip_mode m_zip_mode;
mz_zip_type m_zip_type;
mz_zip_error m_last_error;
mz_uint64 m_file_offset_alignment;
mz_alloc_func m_pAlloc;
mz_free_func m_pFree;
mz_realloc_func m_pRealloc;
void *m_pAlloc_opaque;
mz_file_read_func m_pRead;
mz_file_write_func m_pWrite;
mz_file_needs_keepalive m_pNeeds_keepalive;
void *m_pIO_opaque;
mz_zip_internal_state *m_pState;
} mz_zip_archive;
typedef enum {
MZ_ZIP_FLAG_CASE_SENSITIVE = 0x0100,
MZ_ZIP_FLAG_IGNORE_PATH = 0x0200,
MZ_ZIP_FLAG_COMPRESSED_DATA = 0x0400,
MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY = 0x0800
} mz_zip_flags;
// ZIP archive reading
// Inits a ZIP archive reader.
// These functions read and validate the archive's central directory.
mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size,
mz_uint32 flags);
mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem,
size_t size, mz_uint32 flags);
#ifndef MINIZ_NO_STDIO
mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename,
mz_uint32 flags);
#endif
// Returns the total number of files in the archive.
mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip);
// Returns detailed information about an archive file entry.
mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index,
mz_zip_archive_file_stat *pStat);
// Determines if an archive file entry is a directory entry.
mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip,
mz_uint file_index);
mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip,
mz_uint file_index);
// Retrieves the filename of an archive file entry.
// Returns the number of bytes written to pFilename, or if filename_buf_size is
// 0 this function returns the number of bytes needed to fully store the
// filename.
mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index,
char *pFilename, mz_uint filename_buf_size);
// Attempts to locates a file in the archive's central directory.
// Valid flags: MZ_ZIP_FLAG_CASE_SENSITIVE, MZ_ZIP_FLAG_IGNORE_PATH
// Returns -1 if the file cannot be found.
int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName,
const char *pComment, mz_uint flags);
// Extracts a archive file to a memory buffer using no memory allocation.
mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip,
mz_uint file_index, void *pBuf,
size_t buf_size, mz_uint flags,
void *pUser_read_buf,
size_t user_read_buf_size);
mz_bool mz_zip_reader_extract_file_to_mem_no_alloc(
mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size,
mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size);
// Extracts a archive file to a memory buffer.
mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index,
void *pBuf, size_t buf_size,
mz_uint flags);
mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip,
const char *pFilename, void *pBuf,
size_t buf_size, mz_uint flags);
// Extracts a archive file to a dynamically allocated heap buffer.
void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index,
size_t *pSize, mz_uint flags);
void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip,
const char *pFilename, size_t *pSize,
mz_uint flags);
// Extracts a archive file using a callback function to output the file's data.
mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip,
mz_uint file_index,
mz_file_write_func pCallback,
void *pOpaque, mz_uint flags);
mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip,
const char *pFilename,
mz_file_write_func pCallback,
void *pOpaque, mz_uint flags);
#ifndef MINIZ_NO_STDIO
// Extracts a archive file to a disk file and sets its last accessed and
// modified times. This function only extracts files, not archive directory
// records.
mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index,
const char *pDst_filename, mz_uint flags);
mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip,
const char *pArchive_filename,
const char *pDst_filename,
mz_uint flags);
#endif
// Ends archive reading, freeing all allocations, and closing the input archive
// file if mz_zip_reader_init_file() was used.
mz_bool mz_zip_reader_end(mz_zip_archive *pZip);
// ZIP archive writing
#ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
// Inits a ZIP archive writer.
mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size);
mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip,
size_t size_to_reserve_at_beginning,
size_t initial_allocation_size);
#ifndef MINIZ_NO_STDIO
mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename,
mz_uint64 size_to_reserve_at_beginning);
#endif
// Converts a ZIP archive reader object into a writer object, to allow efficient
// in-place file appends to occur on an existing archive. For archives opened
// using mz_zip_reader_init_file, pFilename must be the archive's filename so it
// can be reopened for writing. If the file can't be reopened,
// mz_zip_reader_end() will be called. For archives opened using
// mz_zip_reader_init_mem, the memory block must be growable using the realloc
// callback (which defaults to realloc unless you've overridden it). Finally,
// for archives opened using mz_zip_reader_init, the mz_zip_archive's user
// provided m_pWrite function cannot be NULL. Note: In-place archive
// modification is not recommended unless you know what you're doing, because if
// execution stops or something goes wrong before the archive is finalized the
// file's central directory will be hosed.
mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip,
const char *pFilename);
// Adds the contents of a memory buffer to an archive. These functions record
// the current local time into the archive. To add a directory entry, call this
// method with an archive name ending in a forwardslash with empty buffer.
// level_and_flags - compression level (0-10, see MZ_BEST_SPEED,
// MZ_BEST_COMPRESSION, etc.) logically OR'd with zero or more mz_zip_flags, or
// just set to MZ_DEFAULT_COMPRESSION.
mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name,
const void *pBuf, size_t buf_size,
mz_uint level_and_flags);
mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip,
const char *pArchive_name, const void *pBuf,
size_t buf_size, const void *pComment,
mz_uint16 comment_size,
mz_uint level_and_flags, mz_uint64 uncomp_size,
mz_uint32 uncomp_crc32);
#ifndef MINIZ_NO_STDIO
// Adds the contents of a disk file to an archive. This function also records
// the disk file's modified time into the archive. level_and_flags - compression
// level (0-10, see MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc.) logically OR'd
// with zero or more mz_zip_flags, or just set to MZ_DEFAULT_COMPRESSION.
mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name,
const char *pSrc_filename, const void *pComment,
mz_uint16 comment_size, mz_uint level_and_flags,
mz_uint32 ext_attributes);
#endif
// Adds a file to an archive by fully cloning the data from another archive.
// This function fully clones the source file's compressed data (no
// recompression), along with its full filename, extra data, and comment fields.
mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip,
mz_zip_archive *pSource_zip,
mz_uint file_index);
// Finalizes the archive by writing the central directory records followed by
// the end of central directory record. After an archive is finalized, the only
// valid call on the mz_zip_archive struct is mz_zip_writer_end(). An archive
// must be manually finalized by calling this function for it to be valid.
mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip);
mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf,
size_t *pSize);
// Ends archive writing, freeing all allocations, and closing the output file if
// mz_zip_writer_init_file() was used. Note for the archive to be valid, it must
// have been finalized before ending.
mz_bool mz_zip_writer_end(mz_zip_archive *pZip);
// Misc. high-level helper functions:
// mz_zip_add_mem_to_archive_file_in_place() efficiently (but not atomically)
// appends a memory blob to a ZIP archive. level_and_flags - compression level
// (0-10, see MZ_BEST_SPEED, MZ_BEST_COMPRESSION, etc.) logically OR'd with zero
// or more mz_zip_flags, or just set to MZ_DEFAULT_COMPRESSION.
mz_bool mz_zip_add_mem_to_archive_file_in_place(
const char *pZip_filename, const char *pArchive_name, const void *pBuf,
size_t buf_size, const void *pComment, mz_uint16 comment_size,
mz_uint level_and_flags);
// Reads a single file from an archive into a heap block.
// Returns NULL on failure.
void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename,
const char *pArchive_name,
size_t *pSize, mz_uint zip_flags);
#endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
#endif // #ifndef MINIZ_NO_ARCHIVE_APIS
// ------------------- Low-level Decompression API Definitions
// Decompression flags used by tinfl_decompress().
// TINFL_FLAG_PARSE_ZLIB_HEADER: If set, the input has a valid zlib header and
// ends with an adler32 checksum (it's a valid zlib stream). Otherwise, the
// input is a raw deflate stream. TINFL_FLAG_HAS_MORE_INPUT: If set, there are
// more input bytes available beyond the end of the supplied input buffer. If
// clear, the input buffer contains all remaining input.
// TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF: If set, the output buffer is large
// enough to hold the entire decompressed stream. If clear, the output buffer is
// at least the size of the dictionary (typically 32KB).
// TINFL_FLAG_COMPUTE_ADLER32: Force adler-32 checksum computation of the
// decompressed bytes.
enum {
TINFL_FLAG_PARSE_ZLIB_HEADER = 1,
TINFL_FLAG_HAS_MORE_INPUT = 2,
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF = 4,
TINFL_FLAG_COMPUTE_ADLER32 = 8
};
// High level decompression functions:
// tinfl_decompress_mem_to_heap() decompresses a block in memory to a heap block
// allocated via malloc(). On entry:
// pSrc_buf, src_buf_len: Pointer and size of the Deflate or zlib source data
// to decompress.
// On return:
// Function returns a pointer to the decompressed data, or NULL on failure.
// *pOut_len will be set to the decompressed data's size, which could be larger
// than src_buf_len on uncompressible data. The caller must call mz_free() on
// the returned block when it's no longer needed.
void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
size_t *pOut_len, int flags);
// tinfl_decompress_mem_to_mem() decompresses a block in memory to another block
// in memory. Returns TINFL_DECOMPRESS_MEM_TO_MEM_FAILED on failure, or the
// number of bytes written on success.
#define TINFL_DECOMPRESS_MEM_TO_MEM_FAILED ((size_t)(-1))
size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
const void *pSrc_buf, size_t src_buf_len,
int flags);
// tinfl_decompress_mem_to_callback() decompresses a block in memory to an
// internal 32KB buffer, and a user provided callback function will be called to
// flush the buffer. Returns 1 on success or 0 on failure.
typedef int (*tinfl_put_buf_func_ptr)(const void *pBuf, int len, void *pUser);
int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size,
tinfl_put_buf_func_ptr pPut_buf_func,
void *pPut_buf_user, int flags);
struct tinfl_decompressor_tag;
typedef struct tinfl_decompressor_tag tinfl_decompressor;
// Max size of LZ dictionary.
#define TINFL_LZ_DICT_SIZE 32768
// Return status.
typedef enum {
TINFL_STATUS_BAD_PARAM = -3,
TINFL_STATUS_ADLER32_MISMATCH = -2,
TINFL_STATUS_FAILED = -1,
TINFL_STATUS_DONE = 0,
TINFL_STATUS_NEEDS_MORE_INPUT = 1,
TINFL_STATUS_HAS_MORE_OUTPUT = 2
} tinfl_status;
// Initializes the decompressor to its initial state.
#define tinfl_init(r) \
do { \
(r)->m_state = 0; \
} \
MZ_MACRO_END
#define tinfl_get_adler32(r) (r)->m_check_adler32
// Main low-level decompressor coroutine function. This is the only function
// actually needed for decompression. All the other functions are just
// high-level helpers for improved usability. This is a universal API, i.e. it
// can be used as a building block to build any desired higher level
// decompression API. In the limit case, it can be called once per every byte
// input or output.
tinfl_status tinfl_decompress(tinfl_decompressor *r,
const mz_uint8 *pIn_buf_next,
size_t *pIn_buf_size, mz_uint8 *pOut_buf_start,
mz_uint8 *pOut_buf_next, size_t *pOut_buf_size,
const mz_uint32 decomp_flags);
// Internal/private bits follow.
enum {
TINFL_MAX_HUFF_TABLES = 3,
TINFL_MAX_HUFF_SYMBOLS_0 = 288,
TINFL_MAX_HUFF_SYMBOLS_1 = 32,
TINFL_MAX_HUFF_SYMBOLS_2 = 19,
TINFL_FAST_LOOKUP_BITS = 10,
TINFL_FAST_LOOKUP_SIZE = 1 << TINFL_FAST_LOOKUP_BITS
};
typedef struct {
mz_uint8 m_code_size[TINFL_MAX_HUFF_SYMBOLS_0];
mz_int16 m_look_up[TINFL_FAST_LOOKUP_SIZE],
m_tree[TINFL_MAX_HUFF_SYMBOLS_0 * 2];
} tinfl_huff_table;
#if MINIZ_HAS_64BIT_REGISTERS
#define TINFL_USE_64BIT_BITBUF 1
#endif
#if TINFL_USE_64BIT_BITBUF
typedef mz_uint64 tinfl_bit_buf_t;
#define TINFL_BITBUF_SIZE (64)
#else
typedef mz_uint32 tinfl_bit_buf_t;
#define TINFL_BITBUF_SIZE (32)
#endif
struct tinfl_decompressor_tag {
mz_uint32 m_state, m_num_bits, m_zhdr0, m_zhdr1, m_z_adler32, m_final, m_type,
m_check_adler32, m_dist, m_counter, m_num_extra,
m_table_sizes[TINFL_MAX_HUFF_TABLES];
tinfl_bit_buf_t m_bit_buf;
size_t m_dist_from_out_buf_start;
tinfl_huff_table m_tables[TINFL_MAX_HUFF_TABLES];
mz_uint8 m_raw_header[4],
m_len_codes[TINFL_MAX_HUFF_SYMBOLS_0 + TINFL_MAX_HUFF_SYMBOLS_1 + 137];
};
// ------------------- Low-level Compression API Definitions
// Set TDEFL_LESS_MEMORY to 1 to use less memory (compression will be slightly
// slower, and raw/dynamic blocks will be output more frequently).
#define TDEFL_LESS_MEMORY 0
// tdefl_init() compression flags logically OR'd together (low 12 bits contain
// the max. number of probes per dictionary search): TDEFL_DEFAULT_MAX_PROBES:
// The compressor defaults to 128 dictionary probes per dictionary search.
// 0=Huffman only, 1=Huffman+LZ (fastest/crap compression), 4095=Huffman+LZ
// (slowest/best compression).
enum {
TDEFL_HUFFMAN_ONLY = 0,
TDEFL_DEFAULT_MAX_PROBES = 128,
TDEFL_MAX_PROBES_MASK = 0xFFF
};
// TDEFL_WRITE_ZLIB_HEADER: If set, the compressor outputs a zlib header before
// the deflate data, and the Adler-32 of the source data at the end. Otherwise,
// you'll get raw deflate data. TDEFL_COMPUTE_ADLER32: Always compute the
// adler-32 of the input data (even when not writing zlib headers).
// TDEFL_GREEDY_PARSING_FLAG: Set to use faster greedy parsing, instead of more
// efficient lazy parsing. TDEFL_NONDETERMINISTIC_PARSING_FLAG: Enable to
// decrease the compressor's initialization time to the minimum, but the output
// may vary from run to run given the same input (depending on the contents of
// memory). TDEFL_RLE_MATCHES: Only look for RLE matches (matches with a
// distance of 1) TDEFL_FILTER_MATCHES: Discards matches <= 5 chars if enabled.
// TDEFL_FORCE_ALL_STATIC_BLOCKS: Disable usage of optimized Huffman tables.
// TDEFL_FORCE_ALL_RAW_BLOCKS: Only use raw (uncompressed) deflate blocks.
// The low 12 bits are reserved to control the max # of hash probes per
// dictionary lookup (see TDEFL_MAX_PROBES_MASK).
enum {
TDEFL_WRITE_ZLIB_HEADER = 0x01000,
TDEFL_COMPUTE_ADLER32 = 0x02000,
TDEFL_GREEDY_PARSING_FLAG = 0x04000,
TDEFL_NONDETERMINISTIC_PARSING_FLAG = 0x08000,
TDEFL_RLE_MATCHES = 0x10000,
TDEFL_FILTER_MATCHES = 0x20000,
TDEFL_FORCE_ALL_STATIC_BLOCKS = 0x40000,
TDEFL_FORCE_ALL_RAW_BLOCKS = 0x80000
};
// High level compression functions:
// tdefl_compress_mem_to_heap() compresses a block in memory to a heap block
// allocated via malloc(). On entry:
// pSrc_buf, src_buf_len: Pointer and size of source block to compress.
// flags: The max match finder probes (default is 128) logically OR'd against
// the above flags. Higher probes are slower but improve compression.
// On return:
// Function returns a pointer to the compressed data, or NULL on failure.
// *pOut_len will be set to the compressed data's size, which could be larger
// than src_buf_len on uncompressible data. The caller must free() the returned
// block when it's no longer needed.
void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
size_t *pOut_len, int flags);
// tdefl_compress_mem_to_mem() compresses a block in memory to another block in
// memory. Returns 0 on failure.
size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
const void *pSrc_buf, size_t src_buf_len,
int flags);
// Compresses an image to a compressed PNG file in memory.
// On entry:
// pImage, w, h, and num_chans describe the image to compress. num_chans may be
// 1, 2, 3, or 4. The image pitch in bytes per scanline will be w*num_chans.
// The leftmost pixel on the top scanline is stored first in memory. level may
// range from [0,10], use MZ_NO_COMPRESSION, MZ_BEST_SPEED,
// MZ_BEST_COMPRESSION, etc. or a decent default is MZ_DEFAULT_LEVEL If flip is
// true, the image will be flipped on the Y axis (useful for OpenGL apps).
// On return:
// Function returns a pointer to the compressed data, or NULL on failure.
// *pLen_out will be set to the size of the PNG image file.
// The caller must mz_free() the returned heap block (which will typically be
// larger than *pLen_out) when it's no longer needed.
void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w,
int h, int num_chans,
size_t *pLen_out,
mz_uint level, mz_bool flip);
void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h,
int num_chans, size_t *pLen_out);
// Output stream interface. The compressor uses this interface to write
// compressed data. It'll typically be called TDEFL_OUT_BUF_SIZE at a time.
typedef mz_bool (*tdefl_put_buf_func_ptr)(const void *pBuf, int len,
void *pUser);
// tdefl_compress_mem_to_output() compresses a block to an output stream. The
// above helpers use this function internally.
mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len,
tdefl_put_buf_func_ptr pPut_buf_func,
void *pPut_buf_user, int flags);
enum {
TDEFL_MAX_HUFF_TABLES = 3,
TDEFL_MAX_HUFF_SYMBOLS_0 = 288,
TDEFL_MAX_HUFF_SYMBOLS_1 = 32,
TDEFL_MAX_HUFF_SYMBOLS_2 = 19,
TDEFL_LZ_DICT_SIZE = 32768,
TDEFL_LZ_DICT_SIZE_MASK = TDEFL_LZ_DICT_SIZE - 1,
TDEFL_MIN_MATCH_LEN = 3,
TDEFL_MAX_MATCH_LEN = 258
};
// TDEFL_OUT_BUF_SIZE MUST be large enough to hold a single entire compressed
// output block (using static/fixed Huffman codes).
#if TDEFL_LESS_MEMORY
enum {
TDEFL_LZ_CODE_BUF_SIZE = 24 * 1024,
TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13) / 10,
TDEFL_MAX_HUFF_SYMBOLS = 288,
TDEFL_LZ_HASH_BITS = 12,
TDEFL_LEVEL1_HASH_SIZE_MASK = 4095,
TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3,
TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS
};
#else
enum {
TDEFL_LZ_CODE_BUF_SIZE = 64 * 1024,
TDEFL_OUT_BUF_SIZE = (TDEFL_LZ_CODE_BUF_SIZE * 13) / 10,
TDEFL_MAX_HUFF_SYMBOLS = 288,
TDEFL_LZ_HASH_BITS = 15,
TDEFL_LEVEL1_HASH_SIZE_MASK = 4095,
TDEFL_LZ_HASH_SHIFT = (TDEFL_LZ_HASH_BITS + 2) / 3,
TDEFL_LZ_HASH_SIZE = 1 << TDEFL_LZ_HASH_BITS
};
#endif
// The low-level tdefl functions below may be used directly if the above helper
// functions aren't flexible enough. The low-level functions don't make any heap
// allocations, unlike the above helper functions.
typedef enum {
TDEFL_STATUS_BAD_PARAM = -2,
TDEFL_STATUS_PUT_BUF_FAILED = -1,
TDEFL_STATUS_OKAY = 0,
TDEFL_STATUS_DONE = 1,
} tdefl_status;
// Must map to MZ_NO_FLUSH, MZ_SYNC_FLUSH, etc. enums
typedef enum {
TDEFL_NO_FLUSH = 0,
TDEFL_SYNC_FLUSH = 2,
TDEFL_FULL_FLUSH = 3,
TDEFL_FINISH = 4
} tdefl_flush;
// tdefl's compression state structure.
typedef struct {
tdefl_put_buf_func_ptr m_pPut_buf_func;
void *m_pPut_buf_user;
mz_uint m_flags, m_max_probes[2];
int m_greedy_parsing;
mz_uint m_adler32, m_lookahead_pos, m_lookahead_size, m_dict_size;
mz_uint8 *m_pLZ_code_buf, *m_pLZ_flags, *m_pOutput_buf, *m_pOutput_buf_end;
mz_uint m_num_flags_left, m_total_lz_bytes, m_lz_code_buf_dict_pos, m_bits_in,
m_bit_buffer;
mz_uint m_saved_match_dist, m_saved_match_len, m_saved_lit,
m_output_flush_ofs, m_output_flush_remaining, m_finished, m_block_index,
m_wants_to_finish;
tdefl_status m_prev_return_status;
const void *m_pIn_buf;
void *m_pOut_buf;
size_t *m_pIn_buf_size, *m_pOut_buf_size;
tdefl_flush m_flush;
const mz_uint8 *m_pSrc;
size_t m_src_buf_left, m_out_buf_ofs;
mz_uint8 m_dict[TDEFL_LZ_DICT_SIZE + TDEFL_MAX_MATCH_LEN - 1];
mz_uint16 m_huff_count[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
mz_uint16 m_huff_codes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
mz_uint8 m_huff_code_sizes[TDEFL_MAX_HUFF_TABLES][TDEFL_MAX_HUFF_SYMBOLS];
mz_uint8 m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE];
mz_uint16 m_next[TDEFL_LZ_DICT_SIZE];
mz_uint16 m_hash[TDEFL_LZ_HASH_SIZE];
mz_uint8 m_output_buf[TDEFL_OUT_BUF_SIZE];
} tdefl_compressor;
// Initializes the compressor.
// There is no corresponding deinit() function because the tdefl API's do not
// dynamically allocate memory. pBut_buf_func: If NULL, output data will be
// supplied to the specified callback. In this case, the user should call the
// tdefl_compress_buffer() API for compression. If pBut_buf_func is NULL the
// user should always call the tdefl_compress() API. flags: See the above enums
// (TDEFL_HUFFMAN_ONLY, TDEFL_WRITE_ZLIB_HEADER, etc.)
tdefl_status tdefl_init(tdefl_compressor *d,
tdefl_put_buf_func_ptr pPut_buf_func,
void *pPut_buf_user, int flags);
// Compresses a block of data, consuming as much of the specified input buffer
// as possible, and writing as much compressed data to the specified output
// buffer as possible.
tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf,
size_t *pIn_buf_size, void *pOut_buf,
size_t *pOut_buf_size, tdefl_flush flush);
// tdefl_compress_buffer() is only usable when the tdefl_init() is called with a
// non-NULL tdefl_put_buf_func_ptr. tdefl_compress_buffer() always consumes the
// entire input buffer.
tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf,
size_t in_buf_size, tdefl_flush flush);
tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d);
mz_uint32 tdefl_get_adler32(tdefl_compressor *d);
// Can't use tdefl_create_comp_flags_from_zip_params if MINIZ_NO_ZLIB_APIS isn't
// defined, because it uses some of its macros.
#ifndef MINIZ_NO_ZLIB_APIS
// Create tdefl_compress() flags given zlib-style compression parameters.
// level may range from [0,10] (where 10 is absolute max compression, but may be
// much slower on some files) window_bits may be -15 (raw deflate) or 15 (zlib)
// strategy may be either MZ_DEFAULT_STRATEGY, MZ_FILTERED, MZ_HUFFMAN_ONLY,
// MZ_RLE, or MZ_FIXED
mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits,
int strategy);
#endif // #ifndef MINIZ_NO_ZLIB_APIS
#define MZ_UINT16_MAX (0xFFFFU)
#define MZ_UINT32_MAX (0xFFFFFFFFU)
#ifdef __cplusplus
}
#endif
#endif // MINIZ_HEADER_INCLUDED
// ------------------- End of Header: Implementation follows. (If you only want
// the header, define MINIZ_HEADER_FILE_ONLY.)
#ifndef MINIZ_HEADER_FILE_ONLY
typedef unsigned char mz_validate_uint16[sizeof(mz_uint16) == 2 ? 1 : -1];
typedef unsigned char mz_validate_uint32[sizeof(mz_uint32) == 4 ? 1 : -1];
typedef unsigned char mz_validate_uint64[sizeof(mz_uint64) == 8 ? 1 : -1];
#include <assert.h>
#include <string.h>
#define MZ_ASSERT(x) assert(x)
#ifdef MINIZ_NO_MALLOC
#define MZ_MALLOC(x) NULL
#define MZ_FREE(x) (void)x, ((void)0)
#define MZ_REALLOC(p, x) NULL
#else
#define MZ_MALLOC(x) malloc(x)
#define MZ_FREE(x) free(x)
#define MZ_REALLOC(p, x) realloc(p, x)
#endif
#define MZ_MAX(a, b) (((a) > (b)) ? (a) : (b))
#define MZ_MIN(a, b) (((a) < (b)) ? (a) : (b))
#define MZ_CLEAR_OBJ(obj) memset(&(obj), 0, sizeof(obj))
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
#define MZ_READ_LE16(p) *((const mz_uint16 *)(p))
#define MZ_READ_LE32(p) *((const mz_uint32 *)(p))
#else
#define MZ_READ_LE16(p) \
((mz_uint32)(((const mz_uint8 *)(p))[0]) | \
((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U))
#define MZ_READ_LE32(p) \
((mz_uint32)(((const mz_uint8 *)(p))[0]) | \
((mz_uint32)(((const mz_uint8 *)(p))[1]) << 8U) | \
((mz_uint32)(((const mz_uint8 *)(p))[2]) << 16U) | \
((mz_uint32)(((const mz_uint8 *)(p))[3]) << 24U))
#endif
#define MZ_READ_LE64(p) \
(((mz_uint64)MZ_READ_LE32(p)) | \
(((mz_uint64)MZ_READ_LE32((const mz_uint8 *)(p) + sizeof(mz_uint32))) \
<< 32U))
#ifdef _MSC_VER
#define MZ_FORCEINLINE __forceinline
#elif defined(__GNUC__)
#define MZ_FORCEINLINE inline __attribute__((__always_inline__))
#else
#define MZ_FORCEINLINE inline
#endif
#ifdef __cplusplus
extern "C" {
#endif
// ------------------- zlib-style API's
mz_ulong mz_adler32(mz_ulong adler, const unsigned char *ptr, size_t buf_len) {
mz_uint32 i, s1 = (mz_uint32)(adler & 0xffff), s2 = (mz_uint32)(adler >> 16);
size_t block_len = buf_len % 5552;
if (!ptr)
return MZ_ADLER32_INIT;
while (buf_len) {
for (i = 0; i + 7 < block_len; i += 8, ptr += 8) {
s1 += ptr[0], s2 += s1;
s1 += ptr[1], s2 += s1;
s1 += ptr[2], s2 += s1;
s1 += ptr[3], s2 += s1;
s1 += ptr[4], s2 += s1;
s1 += ptr[5], s2 += s1;
s1 += ptr[6], s2 += s1;
s1 += ptr[7], s2 += s1;
}
for (; i < block_len; ++i)
s1 += *ptr++, s2 += s1;
s1 %= 65521U, s2 %= 65521U;
buf_len -= block_len;
block_len = 5552;
}
return (s2 << 16) + s1;
}
// Karl Malbrain's compact CRC-32. See "A compact CCITT crc16 and crc32 C
// implementation that balances processor cache usage against speed":
// http://www.geocities.com/malbrain/
mz_ulong mz_crc32(mz_ulong crc, const mz_uint8 *ptr, size_t buf_len) {
static const mz_uint32 s_crc32[16] = {
0, 0x1db71064, 0x3b6e20c8, 0x26d930ac, 0x76dc4190, 0x6b6b51f4,
0x4db26158, 0x5005713c, 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c};
mz_uint32 crcu32 = (mz_uint32)crc;
if (!ptr)
return MZ_CRC32_INIT;
crcu32 = ~crcu32;
while (buf_len--) {
mz_uint8 b = *ptr++;
crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b & 0xF)];
crcu32 = (crcu32 >> 4) ^ s_crc32[(crcu32 & 0xF) ^ (b >> 4)];
}
return ~crcu32;
}
void mz_free(void *p) { MZ_FREE(p); }
#ifndef MINIZ_NO_ZLIB_APIS
static void *def_alloc_func(void *opaque, size_t items, size_t size) {
(void)opaque, (void)items, (void)size;
return MZ_MALLOC(items * size);
}
static void def_free_func(void *opaque, void *address) {
(void)opaque, (void)address;
MZ_FREE(address);
}
static void *def_realloc_func(void *opaque, void *address, size_t items,
size_t size) {
(void)opaque, (void)address, (void)items, (void)size;
return MZ_REALLOC(address, items * size);
}
const char *mz_version(void) { return MZ_VERSION; }
int mz_deflateInit(mz_streamp pStream, int level) {
return mz_deflateInit2(pStream, level, MZ_DEFLATED, MZ_DEFAULT_WINDOW_BITS, 9,
MZ_DEFAULT_STRATEGY);
}
int mz_deflateInit2(mz_streamp pStream, int level, int method, int window_bits,
int mem_level, int strategy) {
tdefl_compressor *pComp;
mz_uint comp_flags =
TDEFL_COMPUTE_ADLER32 |
tdefl_create_comp_flags_from_zip_params(level, window_bits, strategy);
if (!pStream)
return MZ_STREAM_ERROR;
if ((method != MZ_DEFLATED) || ((mem_level < 1) || (mem_level > 9)) ||
((window_bits != MZ_DEFAULT_WINDOW_BITS) &&
(-window_bits != MZ_DEFAULT_WINDOW_BITS)))
return MZ_PARAM_ERROR;
pStream->data_type = 0;
pStream->adler = MZ_ADLER32_INIT;
pStream->msg = NULL;
pStream->reserved = 0;
pStream->total_in = 0;
pStream->total_out = 0;
if (!pStream->zalloc)
pStream->zalloc = def_alloc_func;
if (!pStream->zfree)
pStream->zfree = def_free_func;
pComp = (tdefl_compressor *)pStream->zalloc(pStream->opaque, 1,
sizeof(tdefl_compressor));
if (!pComp)
return MZ_MEM_ERROR;
pStream->state = (struct mz_internal_state *)pComp;
if (tdefl_init(pComp, NULL, NULL, comp_flags) != TDEFL_STATUS_OKAY) {
mz_deflateEnd(pStream);
return MZ_PARAM_ERROR;
}
return MZ_OK;
}
int mz_deflateReset(mz_streamp pStream) {
if ((!pStream) || (!pStream->state) || (!pStream->zalloc) ||
(!pStream->zfree))
return MZ_STREAM_ERROR;
pStream->total_in = pStream->total_out = 0;
tdefl_init((tdefl_compressor *)pStream->state, NULL, NULL,
((tdefl_compressor *)pStream->state)->m_flags);
return MZ_OK;
}
int mz_deflate(mz_streamp pStream, int flush) {
size_t in_bytes, out_bytes;
mz_ulong orig_total_in, orig_total_out;
int mz_status = MZ_OK;
if ((!pStream) || (!pStream->state) || (flush < 0) || (flush > MZ_FINISH) ||
(!pStream->next_out))
return MZ_STREAM_ERROR;
if (!pStream->avail_out)
return MZ_BUF_ERROR;
if (flush == MZ_PARTIAL_FLUSH)
flush = MZ_SYNC_FLUSH;
if (((tdefl_compressor *)pStream->state)->m_prev_return_status ==
TDEFL_STATUS_DONE)
return (flush == MZ_FINISH) ? MZ_STREAM_END : MZ_BUF_ERROR;
orig_total_in = pStream->total_in;
orig_total_out = pStream->total_out;
for (;;) {
tdefl_status defl_status;
in_bytes = pStream->avail_in;
out_bytes = pStream->avail_out;
defl_status = tdefl_compress((tdefl_compressor *)pStream->state,
pStream->next_in, &in_bytes, pStream->next_out,
&out_bytes, (tdefl_flush)flush);
pStream->next_in += (mz_uint)in_bytes;
pStream->avail_in -= (mz_uint)in_bytes;
pStream->total_in += (mz_uint)in_bytes;
pStream->adler = tdefl_get_adler32((tdefl_compressor *)pStream->state);
pStream->next_out += (mz_uint)out_bytes;
pStream->avail_out -= (mz_uint)out_bytes;
pStream->total_out += (mz_uint)out_bytes;
if (defl_status < 0) {
mz_status = MZ_STREAM_ERROR;
break;
} else if (defl_status == TDEFL_STATUS_DONE) {
mz_status = MZ_STREAM_END;
break;
} else if (!pStream->avail_out)
break;
else if ((!pStream->avail_in) && (flush != MZ_FINISH)) {
if ((flush) || (pStream->total_in != orig_total_in) ||
(pStream->total_out != orig_total_out))
break;
return MZ_BUF_ERROR; // Can't make forward progress without some input.
}
}
return mz_status;
}
int mz_deflateEnd(mz_streamp pStream) {
if (!pStream)
return MZ_STREAM_ERROR;
if (pStream->state) {
pStream->zfree(pStream->opaque, pStream->state);
pStream->state = NULL;
}
return MZ_OK;
}
mz_ulong mz_deflateBound(mz_streamp pStream, mz_ulong source_len) {
(void)pStream;
// This is really over conservative. (And lame, but it's actually pretty
// tricky to compute a true upper bound given the way tdefl's blocking works.)
return MZ_MAX(128 + (source_len * 110) / 100,
128 + source_len + ((source_len / (31 * 1024)) + 1) * 5);
}
int mz_compress2(unsigned char *pDest, mz_ulong *pDest_len,
const unsigned char *pSource, mz_ulong source_len, int level) {
int status;
mz_stream stream;
memset(&stream, 0, sizeof(stream));
// In case mz_ulong is 64-bits (argh I hate longs).
if ((source_len | *pDest_len) > 0xFFFFFFFFU)
return MZ_PARAM_ERROR;
stream.next_in = pSource;
stream.avail_in = (mz_uint32)source_len;
stream.next_out = pDest;
stream.avail_out = (mz_uint32)*pDest_len;
status = mz_deflateInit(&stream, level);
if (status != MZ_OK)
return status;
status = mz_deflate(&stream, MZ_FINISH);
if (status != MZ_STREAM_END) {
mz_deflateEnd(&stream);
return (status == MZ_OK) ? MZ_BUF_ERROR : status;
}
*pDest_len = stream.total_out;
return mz_deflateEnd(&stream);
}
int mz_compress(unsigned char *pDest, mz_ulong *pDest_len,
const unsigned char *pSource, mz_ulong source_len) {
return mz_compress2(pDest, pDest_len, pSource, source_len,
MZ_DEFAULT_COMPRESSION);
}
mz_ulong mz_compressBound(mz_ulong source_len) {
return mz_deflateBound(NULL, source_len);
}
typedef struct {
tinfl_decompressor m_decomp;
mz_uint m_dict_ofs, m_dict_avail, m_first_call, m_has_flushed;
int m_window_bits;
mz_uint8 m_dict[TINFL_LZ_DICT_SIZE];
tinfl_status m_last_status;
} inflate_state;
int mz_inflateInit2(mz_streamp pStream, int window_bits) {
inflate_state *pDecomp;
if (!pStream)
return MZ_STREAM_ERROR;
if ((window_bits != MZ_DEFAULT_WINDOW_BITS) &&
(-window_bits != MZ_DEFAULT_WINDOW_BITS))
return MZ_PARAM_ERROR;
pStream->data_type = 0;
pStream->adler = 0;
pStream->msg = NULL;
pStream->total_in = 0;
pStream->total_out = 0;
pStream->reserved = 0;
if (!pStream->zalloc)
pStream->zalloc = def_alloc_func;
if (!pStream->zfree)
pStream->zfree = def_free_func;
pDecomp = (inflate_state *)pStream->zalloc(pStream->opaque, 1,
sizeof(inflate_state));
if (!pDecomp)
return MZ_MEM_ERROR;
pStream->state = (struct mz_internal_state *)pDecomp;
tinfl_init(&pDecomp->m_decomp);
pDecomp->m_dict_ofs = 0;
pDecomp->m_dict_avail = 0;
pDecomp->m_last_status = TINFL_STATUS_NEEDS_MORE_INPUT;
pDecomp->m_first_call = 1;
pDecomp->m_has_flushed = 0;
pDecomp->m_window_bits = window_bits;
return MZ_OK;
}
int mz_inflateInit(mz_streamp pStream) {
return mz_inflateInit2(pStream, MZ_DEFAULT_WINDOW_BITS);
}
int mz_inflate(mz_streamp pStream, int flush) {
inflate_state *pState;
mz_uint n, first_call, decomp_flags = TINFL_FLAG_COMPUTE_ADLER32;
size_t in_bytes, out_bytes, orig_avail_in;
tinfl_status status;
if ((!pStream) || (!pStream->state))
return MZ_STREAM_ERROR;
if (flush == MZ_PARTIAL_FLUSH)
flush = MZ_SYNC_FLUSH;
if ((flush) && (flush != MZ_SYNC_FLUSH) && (flush != MZ_FINISH))
return MZ_STREAM_ERROR;
pState = (inflate_state *)pStream->state;
if (pState->m_window_bits > 0)
decomp_flags |= TINFL_FLAG_PARSE_ZLIB_HEADER;
orig_avail_in = pStream->avail_in;
first_call = pState->m_first_call;
pState->m_first_call = 0;
if (pState->m_last_status < 0)
return MZ_DATA_ERROR;
if (pState->m_has_flushed && (flush != MZ_FINISH))
return MZ_STREAM_ERROR;
pState->m_has_flushed |= (flush == MZ_FINISH);
if ((flush == MZ_FINISH) && (first_call)) {
// MZ_FINISH on the first call implies that the input and output buffers are
// large enough to hold the entire compressed/decompressed file.
decomp_flags |= TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF;
in_bytes = pStream->avail_in;
out_bytes = pStream->avail_out;
status = tinfl_decompress(&pState->m_decomp, pStream->next_in, &in_bytes,
pStream->next_out, pStream->next_out, &out_bytes,
decomp_flags);
pState->m_last_status = status;
pStream->next_in += (mz_uint)in_bytes;
pStream->avail_in -= (mz_uint)in_bytes;
pStream->total_in += (mz_uint)in_bytes;
pStream->adler = tinfl_get_adler32(&pState->m_decomp);
pStream->next_out += (mz_uint)out_bytes;
pStream->avail_out -= (mz_uint)out_bytes;
pStream->total_out += (mz_uint)out_bytes;
if (status < 0)
return MZ_DATA_ERROR;
else if (status != TINFL_STATUS_DONE) {
pState->m_last_status = TINFL_STATUS_FAILED;
return MZ_BUF_ERROR;
}
return MZ_STREAM_END;
}
// flush != MZ_FINISH then we must assume there's more input.
if (flush != MZ_FINISH)
decomp_flags |= TINFL_FLAG_HAS_MORE_INPUT;
if (pState->m_dict_avail) {
n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);
memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);
pStream->next_out += n;
pStream->avail_out -= n;
pStream->total_out += n;
pState->m_dict_avail -= n;
pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);
return ((pState->m_last_status == TINFL_STATUS_DONE) &&
(!pState->m_dict_avail))
? MZ_STREAM_END
: MZ_OK;
}
for (;;) {
in_bytes = pStream->avail_in;
out_bytes = TINFL_LZ_DICT_SIZE - pState->m_dict_ofs;
status = tinfl_decompress(
&pState->m_decomp, pStream->next_in, &in_bytes, pState->m_dict,
pState->m_dict + pState->m_dict_ofs, &out_bytes, decomp_flags);
pState->m_last_status = status;
pStream->next_in += (mz_uint)in_bytes;
pStream->avail_in -= (mz_uint)in_bytes;
pStream->total_in += (mz_uint)in_bytes;
pStream->adler = tinfl_get_adler32(&pState->m_decomp);
pState->m_dict_avail = (mz_uint)out_bytes;
n = MZ_MIN(pState->m_dict_avail, pStream->avail_out);
memcpy(pStream->next_out, pState->m_dict + pState->m_dict_ofs, n);
pStream->next_out += n;
pStream->avail_out -= n;
pStream->total_out += n;
pState->m_dict_avail -= n;
pState->m_dict_ofs = (pState->m_dict_ofs + n) & (TINFL_LZ_DICT_SIZE - 1);
if (status < 0)
return MZ_DATA_ERROR; // Stream is corrupted (there could be some
// uncompressed data left in the output dictionary -
// oh well).
else if ((status == TINFL_STATUS_NEEDS_MORE_INPUT) && (!orig_avail_in))
return MZ_BUF_ERROR; // Signal caller that we can't make forward progress
// without supplying more input or by setting flush
// to MZ_FINISH.
else if (flush == MZ_FINISH) {
// The output buffer MUST be large to hold the remaining uncompressed data
// when flush==MZ_FINISH.
if (status == TINFL_STATUS_DONE)
return pState->m_dict_avail ? MZ_BUF_ERROR : MZ_STREAM_END;
// status here must be TINFL_STATUS_HAS_MORE_OUTPUT, which means there's
// at least 1 more byte on the way. If there's no more room left in the
// output buffer then something is wrong.
else if (!pStream->avail_out)
return MZ_BUF_ERROR;
} else if ((status == TINFL_STATUS_DONE) || (!pStream->avail_in) ||
(!pStream->avail_out) || (pState->m_dict_avail))
break;
}
return ((status == TINFL_STATUS_DONE) && (!pState->m_dict_avail))
? MZ_STREAM_END
: MZ_OK;
}
int mz_inflateEnd(mz_streamp pStream) {
if (!pStream)
return MZ_STREAM_ERROR;
if (pStream->state) {
pStream->zfree(pStream->opaque, pStream->state);
pStream->state = NULL;
}
return MZ_OK;
}
int mz_uncompress(unsigned char *pDest, mz_ulong *pDest_len,
const unsigned char *pSource, mz_ulong source_len) {
mz_stream stream;
int status;
memset(&stream, 0, sizeof(stream));
// In case mz_ulong is 64-bits (argh I hate longs).
if ((source_len | *pDest_len) > 0xFFFFFFFFU)
return MZ_PARAM_ERROR;
stream.next_in = pSource;
stream.avail_in = (mz_uint32)source_len;
stream.next_out = pDest;
stream.avail_out = (mz_uint32)*pDest_len;
status = mz_inflateInit(&stream);
if (status != MZ_OK)
return status;
status = mz_inflate(&stream, MZ_FINISH);
if (status != MZ_STREAM_END) {
mz_inflateEnd(&stream);
return ((status == MZ_BUF_ERROR) && (!stream.avail_in)) ? MZ_DATA_ERROR
: status;
}
*pDest_len = stream.total_out;
return mz_inflateEnd(&stream);
}
const char *mz_error(int err) {
static struct {
int m_err;
const char *m_pDesc;
} s_error_descs[] = {{MZ_OK, ""},
{MZ_STREAM_END, "stream end"},
{MZ_NEED_DICT, "need dictionary"},
{MZ_ERRNO, "file error"},
{MZ_STREAM_ERROR, "stream error"},
{MZ_DATA_ERROR, "data error"},
{MZ_MEM_ERROR, "out of memory"},
{MZ_BUF_ERROR, "buf error"},
{MZ_VERSION_ERROR, "version error"},
{MZ_PARAM_ERROR, "parameter error"}};
mz_uint i;
for (i = 0; i < sizeof(s_error_descs) / sizeof(s_error_descs[0]); ++i)
if (s_error_descs[i].m_err == err)
return s_error_descs[i].m_pDesc;
return NULL;
}
#endif // MINIZ_NO_ZLIB_APIS
// ------------------- Low-level Decompression (completely independent from all
// compression API's)
#define TINFL_MEMCPY(d, s, l) memcpy(d, s, l)
#define TINFL_MEMSET(p, c, l) memset(p, c, l)
#define TINFL_CR_BEGIN \
switch (r->m_state) { \
case 0:
#define TINFL_CR_RETURN(state_index, result) \
do { \
status = result; \
r->m_state = state_index; \
goto common_exit; \
case state_index:; \
} \
MZ_MACRO_END
#define TINFL_CR_RETURN_FOREVER(state_index, result) \
do { \
for (;;) { \
TINFL_CR_RETURN(state_index, result); \
} \
} \
MZ_MACRO_END
#define TINFL_CR_FINISH }
// TODO: If the caller has indicated that there's no more input, and we attempt
// to read beyond the input buf, then something is wrong with the input because
// the inflator never reads ahead more than it needs to. Currently
// TINFL_GET_BYTE() pads the end of the stream with 0's in this scenario.
#define TINFL_GET_BYTE(state_index, c) \
do { \
if (pIn_buf_cur >= pIn_buf_end) { \
for (;;) { \
if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) { \
TINFL_CR_RETURN(state_index, TINFL_STATUS_NEEDS_MORE_INPUT); \
if (pIn_buf_cur < pIn_buf_end) { \
c = *pIn_buf_cur++; \
break; \
} \
} else { \
c = 0; \
break; \
} \
} \
} else \
c = *pIn_buf_cur++; \
} \
MZ_MACRO_END
#define TINFL_NEED_BITS(state_index, n) \
do { \
mz_uint c; \
TINFL_GET_BYTE(state_index, c); \
bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \
num_bits += 8; \
} while (num_bits < (mz_uint)(n))
#define TINFL_SKIP_BITS(state_index, n) \
do { \
if (num_bits < (mz_uint)(n)) { \
TINFL_NEED_BITS(state_index, n); \
} \
bit_buf >>= (n); \
num_bits -= (n); \
} \
MZ_MACRO_END
#define TINFL_GET_BITS(state_index, b, n) \
do { \
if (num_bits < (mz_uint)(n)) { \
TINFL_NEED_BITS(state_index, n); \
} \
b = bit_buf & ((1 << (n)) - 1); \
bit_buf >>= (n); \
num_bits -= (n); \
} \
MZ_MACRO_END
// TINFL_HUFF_BITBUF_FILL() is only used rarely, when the number of bytes
// remaining in the input buffer falls below 2. It reads just enough bytes from
// the input stream that are needed to decode the next Huffman code (and
// absolutely no more). It works by trying to fully decode a Huffman code by
// using whatever bits are currently present in the bit buffer. If this fails,
// it reads another byte, and tries again until it succeeds or until the bit
// buffer contains >=15 bits (deflate's max. Huffman code size).
#define TINFL_HUFF_BITBUF_FILL(state_index, pHuff) \
do { \
temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]; \
if (temp >= 0) { \
code_len = temp >> 9; \
if ((code_len) && (num_bits >= code_len)) \
break; \
} else if (num_bits > TINFL_FAST_LOOKUP_BITS) { \
code_len = TINFL_FAST_LOOKUP_BITS; \
do { \
temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
} while ((temp < 0) && (num_bits >= (code_len + 1))); \
if (temp >= 0) \
break; \
} \
TINFL_GET_BYTE(state_index, c); \
bit_buf |= (((tinfl_bit_buf_t)c) << num_bits); \
num_bits += 8; \
} while (num_bits < 15);
// TINFL_HUFF_DECODE() decodes the next Huffman coded symbol. It's more complex
// than you would initially expect because the zlib API expects the decompressor
// to never read beyond the final byte of the deflate stream. (In other words,
// when this macro wants to read another byte from the input, it REALLY needs
// another byte in order to fully decode the next Huffman code.) Handling this
// properly is particularly important on raw deflate (non-zlib) streams, which
// aren't followed by a byte aligned adler-32. The slow path is only executed at
// the very end of the input buffer.
#define TINFL_HUFF_DECODE(state_index, sym, pHuff) \
do { \
int temp; \
mz_uint code_len, c; \
if (num_bits < 15) { \
if ((pIn_buf_end - pIn_buf_cur) < 2) { \
TINFL_HUFF_BITBUF_FILL(state_index, pHuff); \
} else { \
bit_buf |= (((tinfl_bit_buf_t)pIn_buf_cur[0]) << num_bits) | \
(((tinfl_bit_buf_t)pIn_buf_cur[1]) << (num_bits + 8)); \
pIn_buf_cur += 2; \
num_bits += 16; \
} \
} \
if ((temp = (pHuff)->m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >= \
0) \
code_len = temp >> 9, temp &= 511; \
else { \
code_len = TINFL_FAST_LOOKUP_BITS; \
do { \
temp = (pHuff)->m_tree[~temp + ((bit_buf >> code_len++) & 1)]; \
} while (temp < 0); \
} \
sym = temp; \
bit_buf >>= code_len; \
num_bits -= code_len; \
} \
MZ_MACRO_END
tinfl_status tinfl_decompress(tinfl_decompressor *r,
const mz_uint8 *pIn_buf_next,
size_t *pIn_buf_size, mz_uint8 *pOut_buf_start,
mz_uint8 *pOut_buf_next, size_t *pOut_buf_size,
const mz_uint32 decomp_flags) {
static const int s_length_base[31] = {
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
static const int s_length_extra[31] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,
4, 4, 5, 5, 5, 5, 0, 0, 0};
static const int s_dist_base[32] = {
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33,
49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537,
2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0};
static const int s_dist_extra[32] = {0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
9, 9, 10, 10, 11, 11, 12, 12, 13, 13};
static const mz_uint8 s_length_dezigzag[19] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
static const int s_min_table_sizes[3] = {257, 1, 4};
tinfl_status status = TINFL_STATUS_FAILED;
mz_uint32 num_bits, dist, counter, num_extra;
tinfl_bit_buf_t bit_buf;
const mz_uint8 *pIn_buf_cur = pIn_buf_next, *const pIn_buf_end =
pIn_buf_next + *pIn_buf_size;
mz_uint8 *pOut_buf_cur = pOut_buf_next, *const pOut_buf_end =
pOut_buf_next + *pOut_buf_size;
size_t out_buf_size_mask =
(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)
? (size_t)-1
: ((pOut_buf_next - pOut_buf_start) + *pOut_buf_size) - 1,
dist_from_out_buf_start;
// Ensure the output buffer's size is a power of 2, unless the output buffer
// is large enough to hold the entire output file (in which case it doesn't
// matter).
if (((out_buf_size_mask + 1) & out_buf_size_mask) ||
(pOut_buf_next < pOut_buf_start)) {
*pIn_buf_size = *pOut_buf_size = 0;
return TINFL_STATUS_BAD_PARAM;
}
num_bits = r->m_num_bits;
bit_buf = r->m_bit_buf;
dist = r->m_dist;
counter = r->m_counter;
num_extra = r->m_num_extra;
dist_from_out_buf_start = r->m_dist_from_out_buf_start;
TINFL_CR_BEGIN
bit_buf = num_bits = dist = counter = num_extra = r->m_zhdr0 = r->m_zhdr1 = 0;
r->m_z_adler32 = r->m_check_adler32 = 1;
if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) {
TINFL_GET_BYTE(1, r->m_zhdr0);
TINFL_GET_BYTE(2, r->m_zhdr1);
counter = (((r->m_zhdr0 * 256 + r->m_zhdr1) % 31 != 0) ||
(r->m_zhdr1 & 32) || ((r->m_zhdr0 & 15) != 8));
if (!(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF))
counter |= (((1U << (8U + (r->m_zhdr0 >> 4))) > 32768U) ||
((out_buf_size_mask + 1) <
(size_t)(1U << (8U + (r->m_zhdr0 >> 4)))));
if (counter) {
TINFL_CR_RETURN_FOREVER(36, TINFL_STATUS_FAILED);
}
}
do {
TINFL_GET_BITS(3, r->m_final, 3);
r->m_type = r->m_final >> 1;
if (r->m_type == 0) {
TINFL_SKIP_BITS(5, num_bits & 7);
for (counter = 0; counter < 4; ++counter) {
if (num_bits)
TINFL_GET_BITS(6, r->m_raw_header[counter], 8);
else
TINFL_GET_BYTE(7, r->m_raw_header[counter]);
}
if ((counter = (r->m_raw_header[0] | (r->m_raw_header[1] << 8))) !=
(mz_uint)(0xFFFF ^
(r->m_raw_header[2] | (r->m_raw_header[3] << 8)))) {
TINFL_CR_RETURN_FOREVER(39, TINFL_STATUS_FAILED);
}
while ((counter) && (num_bits)) {
TINFL_GET_BITS(51, dist, 8);
while (pOut_buf_cur >= pOut_buf_end) {
TINFL_CR_RETURN(52, TINFL_STATUS_HAS_MORE_OUTPUT);
}
*pOut_buf_cur++ = (mz_uint8)dist;
counter--;
}
while (counter) {
size_t n;
while (pOut_buf_cur >= pOut_buf_end) {
TINFL_CR_RETURN(9, TINFL_STATUS_HAS_MORE_OUTPUT);
}
while (pIn_buf_cur >= pIn_buf_end) {
if (decomp_flags & TINFL_FLAG_HAS_MORE_INPUT) {
TINFL_CR_RETURN(38, TINFL_STATUS_NEEDS_MORE_INPUT);
} else {
TINFL_CR_RETURN_FOREVER(40, TINFL_STATUS_FAILED);
}
}
n = MZ_MIN(MZ_MIN((size_t)(pOut_buf_end - pOut_buf_cur),
(size_t)(pIn_buf_end - pIn_buf_cur)),
counter);
TINFL_MEMCPY(pOut_buf_cur, pIn_buf_cur, n);
pIn_buf_cur += n;
pOut_buf_cur += n;
counter -= (mz_uint)n;
}
} else if (r->m_type == 3) {
TINFL_CR_RETURN_FOREVER(10, TINFL_STATUS_FAILED);
} else {
if (r->m_type == 1) {
mz_uint8 *p = r->m_tables[0].m_code_size;
mz_uint i;
r->m_table_sizes[0] = 288;
r->m_table_sizes[1] = 32;
TINFL_MEMSET(r->m_tables[1].m_code_size, 5, 32);
for (i = 0; i <= 143; ++i)
*p++ = 8;
for (; i <= 255; ++i)
*p++ = 9;
for (; i <= 279; ++i)
*p++ = 7;
for (; i <= 287; ++i)
*p++ = 8;
} else {
for (counter = 0; counter < 3; counter++) {
TINFL_GET_BITS(11, r->m_table_sizes[counter], "\05\05\04"[counter]);
r->m_table_sizes[counter] += s_min_table_sizes[counter];
}
MZ_CLEAR_OBJ(r->m_tables[2].m_code_size);
for (counter = 0; counter < r->m_table_sizes[2]; counter++) {
mz_uint s;
TINFL_GET_BITS(14, s, 3);
r->m_tables[2].m_code_size[s_length_dezigzag[counter]] = (mz_uint8)s;
}
r->m_table_sizes[2] = 19;
}
for (; (int)r->m_type >= 0; r->m_type--) {
int tree_next, tree_cur;
tinfl_huff_table *pTable;
mz_uint i, j, used_syms, total, sym_index, next_code[17],
total_syms[16];
pTable = &r->m_tables[r->m_type];
MZ_CLEAR_OBJ(total_syms);
MZ_CLEAR_OBJ(pTable->m_look_up);
MZ_CLEAR_OBJ(pTable->m_tree);
for (i = 0; i < r->m_table_sizes[r->m_type]; ++i)
total_syms[pTable->m_code_size[i]]++;
used_syms = 0, total = 0;
next_code[0] = next_code[1] = 0;
for (i = 1; i <= 15; ++i) {
used_syms += total_syms[i];
next_code[i + 1] = (total = ((total + total_syms[i]) << 1));
}
if ((65536 != total) && (used_syms > 1)) {
TINFL_CR_RETURN_FOREVER(35, TINFL_STATUS_FAILED);
}
for (tree_next = -1, sym_index = 0;
sym_index < r->m_table_sizes[r->m_type]; ++sym_index) {
mz_uint rev_code = 0, l, cur_code,
code_size = pTable->m_code_size[sym_index];
if (!code_size)
continue;
cur_code = next_code[code_size]++;
for (l = code_size; l > 0; l--, cur_code >>= 1)
rev_code = (rev_code << 1) | (cur_code & 1);
if (code_size <= TINFL_FAST_LOOKUP_BITS) {
mz_int16 k = (mz_int16)((code_size << 9) | sym_index);
while (rev_code < TINFL_FAST_LOOKUP_SIZE) {
pTable->m_look_up[rev_code] = k;
rev_code += (1 << code_size);
}
continue;
}
if (0 ==
(tree_cur = pTable->m_look_up[rev_code &
(TINFL_FAST_LOOKUP_SIZE - 1)])) {
pTable->m_look_up[rev_code & (TINFL_FAST_LOOKUP_SIZE - 1)] =
(mz_int16)tree_next;
tree_cur = tree_next;
tree_next -= 2;
}
rev_code >>= (TINFL_FAST_LOOKUP_BITS - 1);
for (j = code_size; j > (TINFL_FAST_LOOKUP_BITS + 1); j--) {
tree_cur -= ((rev_code >>= 1) & 1);
if (!pTable->m_tree[-tree_cur - 1]) {
pTable->m_tree[-tree_cur - 1] = (mz_int16)tree_next;
tree_cur = tree_next;
tree_next -= 2;
} else
tree_cur = pTable->m_tree[-tree_cur - 1];
}
rev_code >>= 1;
tree_cur -= (rev_code & 1);
pTable->m_tree[-tree_cur - 1] = (mz_int16)sym_index;
}
if (r->m_type == 2) {
for (counter = 0;
counter < (r->m_table_sizes[0] + r->m_table_sizes[1]);) {
mz_uint s;
TINFL_HUFF_DECODE(16, dist, &r->m_tables[2]);
if (dist < 16) {
r->m_len_codes[counter++] = (mz_uint8)dist;
continue;
}
if ((dist == 16) && (!counter)) {
TINFL_CR_RETURN_FOREVER(17, TINFL_STATUS_FAILED);
}
num_extra = "\02\03\07"[dist - 16];
TINFL_GET_BITS(18, s, num_extra);
s += "\03\03\013"[dist - 16];
TINFL_MEMSET(r->m_len_codes + counter,
(dist == 16) ? r->m_len_codes[counter - 1] : 0, s);
counter += s;
}
if ((r->m_table_sizes[0] + r->m_table_sizes[1]) != counter) {
TINFL_CR_RETURN_FOREVER(21, TINFL_STATUS_FAILED);
}
TINFL_MEMCPY(r->m_tables[0].m_code_size, r->m_len_codes,
r->m_table_sizes[0]);
TINFL_MEMCPY(r->m_tables[1].m_code_size,
r->m_len_codes + r->m_table_sizes[0],
r->m_table_sizes[1]);
}
}
for (;;) {
mz_uint8 *pSrc;
for (;;) {
if (((pIn_buf_end - pIn_buf_cur) < 4) ||
((pOut_buf_end - pOut_buf_cur) < 2)) {
TINFL_HUFF_DECODE(23, counter, &r->m_tables[0]);
if (counter >= 256)
break;
while (pOut_buf_cur >= pOut_buf_end) {
TINFL_CR_RETURN(24, TINFL_STATUS_HAS_MORE_OUTPUT);
}
*pOut_buf_cur++ = (mz_uint8)counter;
} else {
int sym2;
mz_uint code_len;
#if TINFL_USE_64BIT_BITBUF
if (num_bits < 30) {
bit_buf |=
(((tinfl_bit_buf_t)MZ_READ_LE32(pIn_buf_cur)) << num_bits);
pIn_buf_cur += 4;
num_bits += 32;
}
#else
if (num_bits < 15) {
bit_buf |=
(((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits);
pIn_buf_cur += 2;
num_bits += 16;
}
#endif
if ((sym2 =
r->m_tables[0]
.m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >=
0)
code_len = sym2 >> 9;
else {
code_len = TINFL_FAST_LOOKUP_BITS;
do {
sym2 = r->m_tables[0]
.m_tree[~sym2 + ((bit_buf >> code_len++) & 1)];
} while (sym2 < 0);
}
counter = sym2;
bit_buf >>= code_len;
num_bits -= code_len;
if (counter & 256)
break;
#if !TINFL_USE_64BIT_BITBUF
if (num_bits < 15) {
bit_buf |=
(((tinfl_bit_buf_t)MZ_READ_LE16(pIn_buf_cur)) << num_bits);
pIn_buf_cur += 2;
num_bits += 16;
}
#endif
if ((sym2 =
r->m_tables[0]
.m_look_up[bit_buf & (TINFL_FAST_LOOKUP_SIZE - 1)]) >=
0)
code_len = sym2 >> 9;
else {
code_len = TINFL_FAST_LOOKUP_BITS;
do {
sym2 = r->m_tables[0]
.m_tree[~sym2 + ((bit_buf >> code_len++) & 1)];
} while (sym2 < 0);
}
bit_buf >>= code_len;
num_bits -= code_len;
pOut_buf_cur[0] = (mz_uint8)counter;
if (sym2 & 256) {
pOut_buf_cur++;
counter = sym2;
break;
}
pOut_buf_cur[1] = (mz_uint8)sym2;
pOut_buf_cur += 2;
}
}
if ((counter &= 511) == 256)
break;
num_extra = s_length_extra[counter - 257];
counter = s_length_base[counter - 257];
if (num_extra) {
mz_uint extra_bits;
TINFL_GET_BITS(25, extra_bits, num_extra);
counter += extra_bits;
}
TINFL_HUFF_DECODE(26, dist, &r->m_tables[1]);
num_extra = s_dist_extra[dist];
dist = s_dist_base[dist];
if (num_extra) {
mz_uint extra_bits;
TINFL_GET_BITS(27, extra_bits, num_extra);
dist += extra_bits;
}
dist_from_out_buf_start = pOut_buf_cur - pOut_buf_start;
if ((dist > dist_from_out_buf_start) &&
(decomp_flags & TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)) {
TINFL_CR_RETURN_FOREVER(37, TINFL_STATUS_FAILED);
}
pSrc = pOut_buf_start +
((dist_from_out_buf_start - dist) & out_buf_size_mask);
if ((MZ_MAX(pOut_buf_cur, pSrc) + counter) > pOut_buf_end) {
while (counter--) {
while (pOut_buf_cur >= pOut_buf_end) {
TINFL_CR_RETURN(53, TINFL_STATUS_HAS_MORE_OUTPUT);
}
*pOut_buf_cur++ =
pOut_buf_start[(dist_from_out_buf_start++ - dist) &
out_buf_size_mask];
}
continue;
}
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
else if ((counter >= 9) && (counter <= dist)) {
const mz_uint8 *pSrc_end = pSrc + (counter & ~7);
do {
((mz_uint32 *)pOut_buf_cur)[0] = ((const mz_uint32 *)pSrc)[0];
((mz_uint32 *)pOut_buf_cur)[1] = ((const mz_uint32 *)pSrc)[1];
pOut_buf_cur += 8;
} while ((pSrc += 8) < pSrc_end);
if ((counter &= 7) < 3) {
if (counter) {
pOut_buf_cur[0] = pSrc[0];
if (counter > 1)
pOut_buf_cur[1] = pSrc[1];
pOut_buf_cur += counter;
}
continue;
}
}
#endif
do {
pOut_buf_cur[0] = pSrc[0];
pOut_buf_cur[1] = pSrc[1];
pOut_buf_cur[2] = pSrc[2];
pOut_buf_cur += 3;
pSrc += 3;
} while ((int)(counter -= 3) > 2);
if ((int)counter > 0) {
pOut_buf_cur[0] = pSrc[0];
if ((int)counter > 1)
pOut_buf_cur[1] = pSrc[1];
pOut_buf_cur += counter;
}
}
}
} while (!(r->m_final & 1));
if (decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) {
TINFL_SKIP_BITS(32, num_bits & 7);
for (counter = 0; counter < 4; ++counter) {
mz_uint s;
if (num_bits)
TINFL_GET_BITS(41, s, 8);
else
TINFL_GET_BYTE(42, s);
r->m_z_adler32 = (r->m_z_adler32 << 8) | s;
}
}
TINFL_CR_RETURN_FOREVER(34, TINFL_STATUS_DONE);
TINFL_CR_FINISH
common_exit:
r->m_num_bits = num_bits;
r->m_bit_buf = bit_buf;
r->m_dist = dist;
r->m_counter = counter;
r->m_num_extra = num_extra;
r->m_dist_from_out_buf_start = dist_from_out_buf_start;
*pIn_buf_size = pIn_buf_cur - pIn_buf_next;
*pOut_buf_size = pOut_buf_cur - pOut_buf_next;
if ((decomp_flags &
(TINFL_FLAG_PARSE_ZLIB_HEADER | TINFL_FLAG_COMPUTE_ADLER32)) &&
(status >= 0)) {
const mz_uint8 *ptr = pOut_buf_next;
size_t buf_len = *pOut_buf_size;
mz_uint32 i, s1 = r->m_check_adler32 & 0xffff,
s2 = r->m_check_adler32 >> 16;
size_t block_len = buf_len % 5552;
while (buf_len) {
for (i = 0; i + 7 < block_len; i += 8, ptr += 8) {
s1 += ptr[0], s2 += s1;
s1 += ptr[1], s2 += s1;
s1 += ptr[2], s2 += s1;
s1 += ptr[3], s2 += s1;
s1 += ptr[4], s2 += s1;
s1 += ptr[5], s2 += s1;
s1 += ptr[6], s2 += s1;
s1 += ptr[7], s2 += s1;
}
for (; i < block_len; ++i)
s1 += *ptr++, s2 += s1;
s1 %= 65521U, s2 %= 65521U;
buf_len -= block_len;
block_len = 5552;
}
r->m_check_adler32 = (s2 << 16) + s1;
if ((status == TINFL_STATUS_DONE) &&
(decomp_flags & TINFL_FLAG_PARSE_ZLIB_HEADER) &&
(r->m_check_adler32 != r->m_z_adler32))
status = TINFL_STATUS_ADLER32_MISMATCH;
}
return status;
}
// Higher level helper functions.
void *tinfl_decompress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
size_t *pOut_len, int flags) {
tinfl_decompressor decomp;
void *pBuf = NULL, *pNew_buf;
size_t src_buf_ofs = 0, out_buf_capacity = 0;
*pOut_len = 0;
tinfl_init(&decomp);
for (;;) {
size_t src_buf_size = src_buf_len - src_buf_ofs,
dst_buf_size = out_buf_capacity - *pOut_len, new_out_buf_capacity;
tinfl_status status = tinfl_decompress(
&decomp, (const mz_uint8 *)pSrc_buf + src_buf_ofs, &src_buf_size,
(mz_uint8 *)pBuf, pBuf ? (mz_uint8 *)pBuf + *pOut_len : NULL,
&dst_buf_size,
(flags & ~TINFL_FLAG_HAS_MORE_INPUT) |
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
if ((status < 0) || (status == TINFL_STATUS_NEEDS_MORE_INPUT)) {
MZ_FREE(pBuf);
*pOut_len = 0;
return NULL;
}
src_buf_ofs += src_buf_size;
*pOut_len += dst_buf_size;
if (status == TINFL_STATUS_DONE)
break;
new_out_buf_capacity = out_buf_capacity * 2;
if (new_out_buf_capacity < 128)
new_out_buf_capacity = 128;
pNew_buf = MZ_REALLOC(pBuf, new_out_buf_capacity);
if (!pNew_buf) {
MZ_FREE(pBuf);
*pOut_len = 0;
return NULL;
}
pBuf = pNew_buf;
out_buf_capacity = new_out_buf_capacity;
}
return pBuf;
}
size_t tinfl_decompress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
const void *pSrc_buf, size_t src_buf_len,
int flags) {
tinfl_decompressor decomp;
tinfl_status status;
tinfl_init(&decomp);
status =
tinfl_decompress(&decomp, (const mz_uint8 *)pSrc_buf, &src_buf_len,
(mz_uint8 *)pOut_buf, (mz_uint8 *)pOut_buf, &out_buf_len,
(flags & ~TINFL_FLAG_HAS_MORE_INPUT) |
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF);
return (status != TINFL_STATUS_DONE) ? TINFL_DECOMPRESS_MEM_TO_MEM_FAILED
: out_buf_len;
}
int tinfl_decompress_mem_to_callback(const void *pIn_buf, size_t *pIn_buf_size,
tinfl_put_buf_func_ptr pPut_buf_func,
void *pPut_buf_user, int flags) {
int result = 0;
tinfl_decompressor decomp;
mz_uint8 *pDict = (mz_uint8 *)MZ_MALLOC(TINFL_LZ_DICT_SIZE);
size_t in_buf_ofs = 0, dict_ofs = 0;
if (!pDict)
return TINFL_STATUS_FAILED;
tinfl_init(&decomp);
for (;;) {
size_t in_buf_size = *pIn_buf_size - in_buf_ofs,
dst_buf_size = TINFL_LZ_DICT_SIZE - dict_ofs;
tinfl_status status =
tinfl_decompress(&decomp, (const mz_uint8 *)pIn_buf + in_buf_ofs,
&in_buf_size, pDict, pDict + dict_ofs, &dst_buf_size,
(flags & ~(TINFL_FLAG_HAS_MORE_INPUT |
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF)));
in_buf_ofs += in_buf_size;
if ((dst_buf_size) &&
(!(*pPut_buf_func)(pDict + dict_ofs, (int)dst_buf_size, pPut_buf_user)))
break;
if (status != TINFL_STATUS_HAS_MORE_OUTPUT) {
result = (status == TINFL_STATUS_DONE);
break;
}
dict_ofs = (dict_ofs + dst_buf_size) & (TINFL_LZ_DICT_SIZE - 1);
}
MZ_FREE(pDict);
*pIn_buf_size = in_buf_ofs;
return result;
}
// ------------------- Low-level Compression (independent from all decompression
// API's)
// Purposely making these tables static for faster init and thread safety.
static const mz_uint16 s_tdefl_len_sym[256] = {
257, 258, 259, 260, 261, 262, 263, 264, 265, 265, 266, 266, 267, 267, 268,
268, 269, 269, 269, 269, 270, 270, 270, 270, 271, 271, 271, 271, 272, 272,
272, 272, 273, 273, 273, 273, 273, 273, 273, 273, 274, 274, 274, 274, 274,
274, 274, 274, 275, 275, 275, 275, 275, 275, 275, 275, 276, 276, 276, 276,
276, 276, 276, 276, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277, 277,
277, 277, 277, 277, 277, 278, 278, 278, 278, 278, 278, 278, 278, 278, 278,
278, 278, 278, 278, 278, 278, 279, 279, 279, 279, 279, 279, 279, 279, 279,
279, 279, 279, 279, 279, 279, 279, 280, 280, 280, 280, 280, 280, 280, 280,
280, 280, 280, 280, 280, 280, 280, 280, 281, 281, 281, 281, 281, 281, 281,
281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 281,
281, 281, 281, 281, 281, 281, 281, 281, 281, 281, 282, 282, 282, 282, 282,
282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282,
282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 282, 283, 283, 283,
283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283,
283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 283, 284,
284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284,
284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284, 284,
285};
static const mz_uint8 s_tdefl_len_extra[256] = {
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 0};
static const mz_uint8 s_tdefl_small_dist_sym[512] = {
0, 1, 2, 3, 4, 4, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8,
8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,
16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17,
17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17};
static const mz_uint8 s_tdefl_small_dist_extra[512] = {
0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7};
static const mz_uint8 s_tdefl_large_dist_sym[128] = {
0, 0, 18, 19, 20, 20, 21, 21, 22, 22, 22, 22, 23, 23, 23, 23, 24, 24, 24,
24, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26,
26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27, 27, 27, 27,
27, 27, 27, 27, 27, 27, 27, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28,
28, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29,
29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29};
static const mz_uint8 s_tdefl_large_dist_extra[128] = {
0, 0, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11,
11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13};
// Radix sorts tdefl_sym_freq[] array by 16-bit key m_key. Returns ptr to sorted
// values.
typedef struct {
mz_uint16 m_key, m_sym_index;
} tdefl_sym_freq;
static tdefl_sym_freq *tdefl_radix_sort_syms(mz_uint num_syms,
tdefl_sym_freq *pSyms0,
tdefl_sym_freq *pSyms1) {
mz_uint32 total_passes = 2, pass_shift, pass, i, hist[256 * 2];
tdefl_sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1;
MZ_CLEAR_OBJ(hist);
for (i = 0; i < num_syms; i++) {
mz_uint freq = pSyms0[i].m_key;
hist[freq & 0xFF]++;
hist[256 + ((freq >> 8) & 0xFF)]++;
}
while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256]))
total_passes--;
for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8) {
const mz_uint32 *pHist = &hist[pass << 8];
mz_uint offsets[256], cur_ofs = 0;
for (i = 0; i < 256; i++) {
offsets[i] = cur_ofs;
cur_ofs += pHist[i];
}
for (i = 0; i < num_syms; i++)
pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] =
pCur_syms[i];
{
tdefl_sym_freq *t = pCur_syms;
pCur_syms = pNew_syms;
pNew_syms = t;
}
}
return pCur_syms;
}
// tdefl_calculate_minimum_redundancy() originally written by: Alistair Moffat,
// alistair@cs.mu.oz.au, Jyrki Katajainen, jyrki@diku.dk, November 1996.
static void tdefl_calculate_minimum_redundancy(tdefl_sym_freq *A, int n) {
int root, leaf, next, avbl, used, dpth;
if (n == 0)
return;
else if (n == 1) {
A[0].m_key = 1;
return;
}
A[0].m_key += A[1].m_key;
root = 0;
leaf = 2;
for (next = 1; next < n - 1; next++) {
if (leaf >= n || A[root].m_key < A[leaf].m_key) {
A[next].m_key = A[root].m_key;
A[root++].m_key = (mz_uint16)next;
} else
A[next].m_key = A[leaf++].m_key;
if (leaf >= n || (root < next && A[root].m_key < A[leaf].m_key)) {
A[next].m_key = (mz_uint16)(A[next].m_key + A[root].m_key);
A[root++].m_key = (mz_uint16)next;
} else
A[next].m_key = (mz_uint16)(A[next].m_key + A[leaf++].m_key);
}
A[n - 2].m_key = 0;
for (next = n - 3; next >= 0; next--)
A[next].m_key = A[A[next].m_key].m_key + 1;
avbl = 1;
used = dpth = 0;
root = n - 2;
next = n - 1;
while (avbl > 0) {
while (root >= 0 && (int)A[root].m_key == dpth) {
used++;
root--;
}
while (avbl > used) {
A[next--].m_key = (mz_uint16)(dpth);
avbl--;
}
avbl = 2 * used;
dpth++;
used = 0;
}
}
// Limits canonical Huffman code table's max code size.
enum { TDEFL_MAX_SUPPORTED_HUFF_CODESIZE = 32 };
static void tdefl_huffman_enforce_max_code_size(int *pNum_codes,
int code_list_len,
int max_code_size) {
int i;
mz_uint32 total = 0;
if (code_list_len <= 1)
return;
for (i = max_code_size + 1; i <= TDEFL_MAX_SUPPORTED_HUFF_CODESIZE; i++)
pNum_codes[max_code_size] += pNum_codes[i];
for (i = max_code_size; i > 0; i--)
total += (((mz_uint32)pNum_codes[i]) << (max_code_size - i));
while (total != (1UL << max_code_size)) {
pNum_codes[max_code_size]--;
for (i = max_code_size - 1; i > 0; i--)
if (pNum_codes[i]) {
pNum_codes[i]--;
pNum_codes[i + 1] += 2;
break;
}
total--;
}
}
static void tdefl_optimize_huffman_table(tdefl_compressor *d, int table_num,
int table_len, int code_size_limit,
int static_table) {
int i, j, l, num_codes[1 + TDEFL_MAX_SUPPORTED_HUFF_CODESIZE];
mz_uint next_code[TDEFL_MAX_SUPPORTED_HUFF_CODESIZE + 1];
MZ_CLEAR_OBJ(num_codes);
if (static_table) {
for (i = 0; i < table_len; i++)
num_codes[d->m_huff_code_sizes[table_num][i]]++;
} else {
tdefl_sym_freq syms0[TDEFL_MAX_HUFF_SYMBOLS], syms1[TDEFL_MAX_HUFF_SYMBOLS],
*pSyms;
int num_used_syms = 0;
const mz_uint16 *pSym_count = &d->m_huff_count[table_num][0];
for (i = 0; i < table_len; i++)
if (pSym_count[i]) {
syms0[num_used_syms].m_key = (mz_uint16)pSym_count[i];
syms0[num_used_syms++].m_sym_index = (mz_uint16)i;
}
pSyms = tdefl_radix_sort_syms(num_used_syms, syms0, syms1);
tdefl_calculate_minimum_redundancy(pSyms, num_used_syms);
for (i = 0; i < num_used_syms; i++)
num_codes[pSyms[i].m_key]++;
tdefl_huffman_enforce_max_code_size(num_codes, num_used_syms,
code_size_limit);
MZ_CLEAR_OBJ(d->m_huff_code_sizes[table_num]);
MZ_CLEAR_OBJ(d->m_huff_codes[table_num]);
for (i = 1, j = num_used_syms; i <= code_size_limit; i++)
for (l = num_codes[i]; l > 0; l--)
d->m_huff_code_sizes[table_num][pSyms[--j].m_sym_index] = (mz_uint8)(i);
}
next_code[1] = 0;
for (j = 0, i = 2; i <= code_size_limit; i++)
next_code[i] = j = ((j + num_codes[i - 1]) << 1);
for (i = 0; i < table_len; i++) {
mz_uint rev_code = 0, code, code_size;
if ((code_size = d->m_huff_code_sizes[table_num][i]) == 0)
continue;
code = next_code[code_size]++;
for (l = code_size; l > 0; l--, code >>= 1)
rev_code = (rev_code << 1) | (code & 1);
d->m_huff_codes[table_num][i] = (mz_uint16)rev_code;
}
}
#define TDEFL_PUT_BITS(b, l) \
do { \
mz_uint bits = b; \
mz_uint len = l; \
MZ_ASSERT(bits <= ((1U << len) - 1U)); \
d->m_bit_buffer |= (bits << d->m_bits_in); \
d->m_bits_in += len; \
while (d->m_bits_in >= 8) { \
if (d->m_pOutput_buf < d->m_pOutput_buf_end) \
*d->m_pOutput_buf++ = (mz_uint8)(d->m_bit_buffer); \
d->m_bit_buffer >>= 8; \
d->m_bits_in -= 8; \
} \
} \
MZ_MACRO_END
#define TDEFL_RLE_PREV_CODE_SIZE() \
{ \
if (rle_repeat_count) { \
if (rle_repeat_count < 3) { \
d->m_huff_count[2][prev_code_size] = (mz_uint16)( \
d->m_huff_count[2][prev_code_size] + rle_repeat_count); \
while (rle_repeat_count--) \
packed_code_sizes[num_packed_code_sizes++] = prev_code_size; \
} else { \
d->m_huff_count[2][16] = (mz_uint16)(d->m_huff_count[2][16] + 1); \
packed_code_sizes[num_packed_code_sizes++] = 16; \
packed_code_sizes[num_packed_code_sizes++] = \
(mz_uint8)(rle_repeat_count - 3); \
} \
rle_repeat_count = 0; \
} \
}
#define TDEFL_RLE_ZERO_CODE_SIZE() \
{ \
if (rle_z_count) { \
if (rle_z_count < 3) { \
d->m_huff_count[2][0] = \
(mz_uint16)(d->m_huff_count[2][0] + rle_z_count); \
while (rle_z_count--) \
packed_code_sizes[num_packed_code_sizes++] = 0; \
} else if (rle_z_count <= 10) { \
d->m_huff_count[2][17] = (mz_uint16)(d->m_huff_count[2][17] + 1); \
packed_code_sizes[num_packed_code_sizes++] = 17; \
packed_code_sizes[num_packed_code_sizes++] = \
(mz_uint8)(rle_z_count - 3); \
} else { \
d->m_huff_count[2][18] = (mz_uint16)(d->m_huff_count[2][18] + 1); \
packed_code_sizes[num_packed_code_sizes++] = 18; \
packed_code_sizes[num_packed_code_sizes++] = \
(mz_uint8)(rle_z_count - 11); \
} \
rle_z_count = 0; \
} \
}
static mz_uint8 s_tdefl_packed_code_size_syms_swizzle[] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
static void tdefl_start_dynamic_block(tdefl_compressor *d) {
int num_lit_codes, num_dist_codes, num_bit_lengths;
mz_uint i, total_code_sizes_to_pack, num_packed_code_sizes, rle_z_count,
rle_repeat_count, packed_code_sizes_index;
mz_uint8
code_sizes_to_pack[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1],
packed_code_sizes[TDEFL_MAX_HUFF_SYMBOLS_0 + TDEFL_MAX_HUFF_SYMBOLS_1],
prev_code_size = 0xFF;
d->m_huff_count[0][256] = 1;
tdefl_optimize_huffman_table(d, 0, TDEFL_MAX_HUFF_SYMBOLS_0, 15, MZ_FALSE);
tdefl_optimize_huffman_table(d, 1, TDEFL_MAX_HUFF_SYMBOLS_1, 15, MZ_FALSE);
for (num_lit_codes = 286; num_lit_codes > 257; num_lit_codes--)
if (d->m_huff_code_sizes[0][num_lit_codes - 1])
break;
for (num_dist_codes = 30; num_dist_codes > 1; num_dist_codes--)
if (d->m_huff_code_sizes[1][num_dist_codes - 1])
break;
memcpy(code_sizes_to_pack, &d->m_huff_code_sizes[0][0],
sizeof(mz_uint8) * num_lit_codes);
memcpy(code_sizes_to_pack + num_lit_codes, &d->m_huff_code_sizes[1][0],
sizeof(mz_uint8) * num_dist_codes);
total_code_sizes_to_pack = num_lit_codes + num_dist_codes;
num_packed_code_sizes = 0;
rle_z_count = 0;
rle_repeat_count = 0;
memset(&d->m_huff_count[2][0], 0,
sizeof(d->m_huff_count[2][0]) * TDEFL_MAX_HUFF_SYMBOLS_2);
for (i = 0; i < total_code_sizes_to_pack; i++) {
mz_uint8 code_size = code_sizes_to_pack[i];
if (!code_size) {
TDEFL_RLE_PREV_CODE_SIZE();
if (++rle_z_count == 138) {
TDEFL_RLE_ZERO_CODE_SIZE();
}
} else {
TDEFL_RLE_ZERO_CODE_SIZE();
if (code_size != prev_code_size) {
TDEFL_RLE_PREV_CODE_SIZE();
d->m_huff_count[2][code_size] =
(mz_uint16)(d->m_huff_count[2][code_size] + 1);
packed_code_sizes[num_packed_code_sizes++] = code_size;
} else if (++rle_repeat_count == 6) {
TDEFL_RLE_PREV_CODE_SIZE();
}
}
prev_code_size = code_size;
}
if (rle_repeat_count) {
TDEFL_RLE_PREV_CODE_SIZE();
} else {
TDEFL_RLE_ZERO_CODE_SIZE();
}
tdefl_optimize_huffman_table(d, 2, TDEFL_MAX_HUFF_SYMBOLS_2, 7, MZ_FALSE);
TDEFL_PUT_BITS(2, 2);
TDEFL_PUT_BITS(num_lit_codes - 257, 5);
TDEFL_PUT_BITS(num_dist_codes - 1, 5);
for (num_bit_lengths = 18; num_bit_lengths >= 0; num_bit_lengths--)
if (d->m_huff_code_sizes
[2][s_tdefl_packed_code_size_syms_swizzle[num_bit_lengths]])
break;
num_bit_lengths = MZ_MAX(4, (num_bit_lengths + 1));
TDEFL_PUT_BITS(num_bit_lengths - 4, 4);
for (i = 0; (int)i < num_bit_lengths; i++)
TDEFL_PUT_BITS(
d->m_huff_code_sizes[2][s_tdefl_packed_code_size_syms_swizzle[i]], 3);
for (packed_code_sizes_index = 0;
packed_code_sizes_index < num_packed_code_sizes;) {
mz_uint code = packed_code_sizes[packed_code_sizes_index++];
MZ_ASSERT(code < TDEFL_MAX_HUFF_SYMBOLS_2);
TDEFL_PUT_BITS(d->m_huff_codes[2][code], d->m_huff_code_sizes[2][code]);
if (code >= 16)
TDEFL_PUT_BITS(packed_code_sizes[packed_code_sizes_index++],
"\02\03\07"[code - 16]);
}
}
static void tdefl_start_static_block(tdefl_compressor *d) {
mz_uint i;
mz_uint8 *p = &d->m_huff_code_sizes[0][0];
for (i = 0; i <= 143; ++i)
*p++ = 8;
for (; i <= 255; ++i)
*p++ = 9;
for (; i <= 279; ++i)
*p++ = 7;
for (; i <= 287; ++i)
*p++ = 8;
memset(d->m_huff_code_sizes[1], 5, 32);
tdefl_optimize_huffman_table(d, 0, 288, 15, MZ_TRUE);
tdefl_optimize_huffman_table(d, 1, 32, 15, MZ_TRUE);
TDEFL_PUT_BITS(1, 2);
}
static const mz_uint mz_bitmasks[17] = {
0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF};
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN && \
MINIZ_HAS_64BIT_REGISTERS
static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) {
mz_uint flags;
mz_uint8 *pLZ_codes;
mz_uint8 *pOutput_buf = d->m_pOutput_buf;
mz_uint8 *pLZ_code_buf_end = d->m_pLZ_code_buf;
mz_uint64 bit_buffer = d->m_bit_buffer;
mz_uint bits_in = d->m_bits_in;
#define TDEFL_PUT_BITS_FAST(b, l) \
{ \
bit_buffer |= (((mz_uint64)(b)) << bits_in); \
bits_in += (l); \
}
flags = 1;
for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < pLZ_code_buf_end;
flags >>= 1) {
if (flags == 1)
flags = *pLZ_codes++ | 0x100;
if (flags & 1) {
mz_uint s0, s1, n0, n1, sym, num_extra_bits;
mz_uint match_len = pLZ_codes[0],
match_dist = *(const mz_uint16 *)(pLZ_codes + 1);
pLZ_codes += 3;
MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][s_tdefl_len_sym[match_len]],
d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
TDEFL_PUT_BITS_FAST(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]],
s_tdefl_len_extra[match_len]);
// This sequence coaxes MSVC into using cmov's vs. jmp's.
s0 = s_tdefl_small_dist_sym[match_dist & 511];
n0 = s_tdefl_small_dist_extra[match_dist & 511];
s1 = s_tdefl_large_dist_sym[match_dist >> 8];
n1 = s_tdefl_large_dist_extra[match_dist >> 8];
sym = (match_dist < 512) ? s0 : s1;
num_extra_bits = (match_dist < 512) ? n0 : n1;
MZ_ASSERT(d->m_huff_code_sizes[1][sym]);
TDEFL_PUT_BITS_FAST(d->m_huff_codes[1][sym],
d->m_huff_code_sizes[1][sym]);
TDEFL_PUT_BITS_FAST(match_dist & mz_bitmasks[num_extra_bits],
num_extra_bits);
} else {
mz_uint lit = *pLZ_codes++;
MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit],
d->m_huff_code_sizes[0][lit]);
if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) {
flags >>= 1;
lit = *pLZ_codes++;
MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit],
d->m_huff_code_sizes[0][lit]);
if (((flags & 2) == 0) && (pLZ_codes < pLZ_code_buf_end)) {
flags >>= 1;
lit = *pLZ_codes++;
MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
TDEFL_PUT_BITS_FAST(d->m_huff_codes[0][lit],
d->m_huff_code_sizes[0][lit]);
}
}
}
if (pOutput_buf >= d->m_pOutput_buf_end)
return MZ_FALSE;
*(mz_uint64 *)pOutput_buf = bit_buffer;
pOutput_buf += (bits_in >> 3);
bit_buffer >>= (bits_in & ~7);
bits_in &= 7;
}
#undef TDEFL_PUT_BITS_FAST
d->m_pOutput_buf = pOutput_buf;
d->m_bits_in = 0;
d->m_bit_buffer = 0;
while (bits_in) {
mz_uint32 n = MZ_MIN(bits_in, 16);
TDEFL_PUT_BITS((mz_uint)bit_buffer & mz_bitmasks[n], n);
bit_buffer >>= n;
bits_in -= n;
}
TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]);
return (d->m_pOutput_buf < d->m_pOutput_buf_end);
}
#else
static mz_bool tdefl_compress_lz_codes(tdefl_compressor *d) {
mz_uint flags;
mz_uint8 *pLZ_codes;
flags = 1;
for (pLZ_codes = d->m_lz_code_buf; pLZ_codes < d->m_pLZ_code_buf;
flags >>= 1) {
if (flags == 1)
flags = *pLZ_codes++ | 0x100;
if (flags & 1) {
mz_uint sym, num_extra_bits;
mz_uint match_len = pLZ_codes[0],
match_dist = (pLZ_codes[1] | (pLZ_codes[2] << 8));
pLZ_codes += 3;
MZ_ASSERT(d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
TDEFL_PUT_BITS(d->m_huff_codes[0][s_tdefl_len_sym[match_len]],
d->m_huff_code_sizes[0][s_tdefl_len_sym[match_len]]);
TDEFL_PUT_BITS(match_len & mz_bitmasks[s_tdefl_len_extra[match_len]],
s_tdefl_len_extra[match_len]);
if (match_dist < 512) {
sym = s_tdefl_small_dist_sym[match_dist];
num_extra_bits = s_tdefl_small_dist_extra[match_dist];
} else {
sym = s_tdefl_large_dist_sym[match_dist >> 8];
num_extra_bits = s_tdefl_large_dist_extra[match_dist >> 8];
}
TDEFL_PUT_BITS(d->m_huff_codes[1][sym], d->m_huff_code_sizes[1][sym]);
TDEFL_PUT_BITS(match_dist & mz_bitmasks[num_extra_bits], num_extra_bits);
} else {
mz_uint lit = *pLZ_codes++;
MZ_ASSERT(d->m_huff_code_sizes[0][lit]);
TDEFL_PUT_BITS(d->m_huff_codes[0][lit], d->m_huff_code_sizes[0][lit]);
}
}
TDEFL_PUT_BITS(d->m_huff_codes[0][256], d->m_huff_code_sizes[0][256]);
return (d->m_pOutput_buf < d->m_pOutput_buf_end);
}
#endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN &&
// MINIZ_HAS_64BIT_REGISTERS
static mz_bool tdefl_compress_block(tdefl_compressor *d, mz_bool static_block) {
if (static_block)
tdefl_start_static_block(d);
else
tdefl_start_dynamic_block(d);
return tdefl_compress_lz_codes(d);
}
static int tdefl_flush_block(tdefl_compressor *d, int flush) {
mz_uint saved_bit_buf, saved_bits_in;
mz_uint8 *pSaved_output_buf;
mz_bool comp_block_succeeded = MZ_FALSE;
int n, use_raw_block =
((d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS) != 0) &&
(d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size;
mz_uint8 *pOutput_buf_start =
((d->m_pPut_buf_func == NULL) &&
((*d->m_pOut_buf_size - d->m_out_buf_ofs) >= TDEFL_OUT_BUF_SIZE))
? ((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs)
: d->m_output_buf;
d->m_pOutput_buf = pOutput_buf_start;
d->m_pOutput_buf_end = d->m_pOutput_buf + TDEFL_OUT_BUF_SIZE - 16;
MZ_ASSERT(!d->m_output_flush_remaining);
d->m_output_flush_ofs = 0;
d->m_output_flush_remaining = 0;
*d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> d->m_num_flags_left);
d->m_pLZ_code_buf -= (d->m_num_flags_left == 8);
if ((d->m_flags & TDEFL_WRITE_ZLIB_HEADER) && (!d->m_block_index)) {
TDEFL_PUT_BITS(0x78, 8);
TDEFL_PUT_BITS(0x01, 8);
}
TDEFL_PUT_BITS(flush == TDEFL_FINISH, 1);
pSaved_output_buf = d->m_pOutput_buf;
saved_bit_buf = d->m_bit_buffer;
saved_bits_in = d->m_bits_in;
if (!use_raw_block)
comp_block_succeeded =
tdefl_compress_block(d, (d->m_flags & TDEFL_FORCE_ALL_STATIC_BLOCKS) ||
(d->m_total_lz_bytes < 48));
// If the block gets expanded, forget the current contents of the output
// buffer and send a raw block instead.
if (((use_raw_block) ||
((d->m_total_lz_bytes) && ((d->m_pOutput_buf - pSaved_output_buf + 1U) >=
d->m_total_lz_bytes))) &&
((d->m_lookahead_pos - d->m_lz_code_buf_dict_pos) <= d->m_dict_size)) {
mz_uint i;
d->m_pOutput_buf = pSaved_output_buf;
d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;
TDEFL_PUT_BITS(0, 2);
if (d->m_bits_in) {
TDEFL_PUT_BITS(0, 8 - d->m_bits_in);
}
for (i = 2; i; --i, d->m_total_lz_bytes ^= 0xFFFF) {
TDEFL_PUT_BITS(d->m_total_lz_bytes & 0xFFFF, 16);
}
for (i = 0; i < d->m_total_lz_bytes; ++i) {
TDEFL_PUT_BITS(
d->m_dict[(d->m_lz_code_buf_dict_pos + i) & TDEFL_LZ_DICT_SIZE_MASK],
8);
}
}
// Check for the extremely unlikely (if not impossible) case of the compressed
// block not fitting into the output buffer when using dynamic codes.
else if (!comp_block_succeeded) {
d->m_pOutput_buf = pSaved_output_buf;
d->m_bit_buffer = saved_bit_buf, d->m_bits_in = saved_bits_in;
tdefl_compress_block(d, MZ_TRUE);
}
if (flush) {
if (flush == TDEFL_FINISH) {
if (d->m_bits_in) {
TDEFL_PUT_BITS(0, 8 - d->m_bits_in);
}
if (d->m_flags & TDEFL_WRITE_ZLIB_HEADER) {
mz_uint i, a = d->m_adler32;
for (i = 0; i < 4; i++) {
TDEFL_PUT_BITS((a >> 24) & 0xFF, 8);
a <<= 8;
}
}
} else {
mz_uint i, z = 0;
TDEFL_PUT_BITS(0, 3);
if (d->m_bits_in) {
TDEFL_PUT_BITS(0, 8 - d->m_bits_in);
}
for (i = 2; i; --i, z ^= 0xFFFF) {
TDEFL_PUT_BITS(z & 0xFFFF, 16);
}
}
}
MZ_ASSERT(d->m_pOutput_buf < d->m_pOutput_buf_end);
memset(&d->m_huff_count[0][0], 0,
sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0);
memset(&d->m_huff_count[1][0], 0,
sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1);
d->m_pLZ_code_buf = d->m_lz_code_buf + 1;
d->m_pLZ_flags = d->m_lz_code_buf;
d->m_num_flags_left = 8;
d->m_lz_code_buf_dict_pos += d->m_total_lz_bytes;
d->m_total_lz_bytes = 0;
d->m_block_index++;
if ((n = (int)(d->m_pOutput_buf - pOutput_buf_start)) != 0) {
if (d->m_pPut_buf_func) {
*d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;
if (!(*d->m_pPut_buf_func)(d->m_output_buf, n, d->m_pPut_buf_user))
return (d->m_prev_return_status = TDEFL_STATUS_PUT_BUF_FAILED);
} else if (pOutput_buf_start == d->m_output_buf) {
int bytes_to_copy = (int)MZ_MIN(
(size_t)n, (size_t)(*d->m_pOut_buf_size - d->m_out_buf_ofs));
memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs, d->m_output_buf,
bytes_to_copy);
d->m_out_buf_ofs += bytes_to_copy;
if ((n -= bytes_to_copy) != 0) {
d->m_output_flush_ofs = bytes_to_copy;
d->m_output_flush_remaining = n;
}
} else {
d->m_out_buf_ofs += n;
}
}
return d->m_output_flush_remaining;
}
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
#define TDEFL_READ_UNALIGNED_WORD(p) ((p)[0] | (p)[1] << 8)
static MZ_FORCEINLINE void
tdefl_find_match(tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist,
mz_uint max_match_len, mz_uint *pMatch_dist,
mz_uint *pMatch_len) {
mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK,
match_len = *pMatch_len, probe_pos = pos, next_probe_pos,
probe_len;
mz_uint num_probes_left = d->m_max_probes[match_len >= 32];
const mz_uint16 *s = (const mz_uint16 *)(d->m_dict + pos), *p, *q;
mz_uint16 c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]),
s01 = *s;
MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN);
if (max_match_len <= match_len)
return;
for (;;) {
for (;;) {
if (--num_probes_left == 0)
return;
#define TDEFL_PROBE \
next_probe_pos = d->m_next[probe_pos]; \
if ((!next_probe_pos) || \
((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) \
return; \
probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \
if (TDEFL_READ_UNALIGNED_WORD(&d->m_dict[probe_pos + match_len - 1]) == c01) \
break;
TDEFL_PROBE;
TDEFL_PROBE;
TDEFL_PROBE;
}
if (!dist)
break;
q = (const mz_uint16 *)(d->m_dict + probe_pos);
if (*q != s01)
continue;
p = s;
probe_len = 32;
do {
} while ((*(++p) == *(++q)) && (*(++p) == *(++q)) && (*(++p) == *(++q)) &&
(*(++p) == *(++q)) && (--probe_len > 0));
if (!probe_len) {
*pMatch_dist = dist;
*pMatch_len = MZ_MIN(max_match_len, TDEFL_MAX_MATCH_LEN);
break;
} else if ((probe_len = ((mz_uint)(p - s) * 2) +
(mz_uint)(*(const mz_uint8 *)p ==
*(const mz_uint8 *)q)) > match_len) {
*pMatch_dist = dist;
if ((*pMatch_len = match_len = MZ_MIN(max_match_len, probe_len)) ==
max_match_len)
break;
c01 = TDEFL_READ_UNALIGNED_WORD(&d->m_dict[pos + match_len - 1]);
}
}
}
#else
static MZ_FORCEINLINE void
tdefl_find_match(tdefl_compressor *d, mz_uint lookahead_pos, mz_uint max_dist,
mz_uint max_match_len, mz_uint *pMatch_dist,
mz_uint *pMatch_len) {
mz_uint dist, pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK,
match_len = *pMatch_len, probe_pos = pos, next_probe_pos,
probe_len;
mz_uint num_probes_left = d->m_max_probes[match_len >= 32];
const mz_uint8 *s = d->m_dict + pos, *p, *q;
mz_uint8 c0 = d->m_dict[pos + match_len], c1 = d->m_dict[pos + match_len - 1];
MZ_ASSERT(max_match_len <= TDEFL_MAX_MATCH_LEN);
if (max_match_len <= match_len)
return;
for (;;) {
for (;;) {
if (--num_probes_left == 0)
return;
#define TDEFL_PROBE \
next_probe_pos = d->m_next[probe_pos]; \
if ((!next_probe_pos) || \
((dist = (mz_uint16)(lookahead_pos - next_probe_pos)) > max_dist)) \
return; \
probe_pos = next_probe_pos & TDEFL_LZ_DICT_SIZE_MASK; \
if ((d->m_dict[probe_pos + match_len] == c0) && \
(d->m_dict[probe_pos + match_len - 1] == c1)) \
break;
TDEFL_PROBE;
TDEFL_PROBE;
TDEFL_PROBE;
}
if (!dist)
break;
p = s;
q = d->m_dict + probe_pos;
for (probe_len = 0; probe_len < max_match_len; probe_len++)
if (*p++ != *q++)
break;
if (probe_len > match_len) {
*pMatch_dist = dist;
if ((*pMatch_len = match_len = probe_len) == max_match_len)
return;
c0 = d->m_dict[pos + match_len];
c1 = d->m_dict[pos + match_len - 1];
}
}
}
#endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
static mz_bool tdefl_compress_fast(tdefl_compressor *d) {
// Faster, minimally featured LZRW1-style match+parse loop with better
// register utilization. Intended for applications where raw throughput is
// valued more highly than ratio.
mz_uint lookahead_pos = d->m_lookahead_pos,
lookahead_size = d->m_lookahead_size, dict_size = d->m_dict_size,
total_lz_bytes = d->m_total_lz_bytes,
num_flags_left = d->m_num_flags_left;
mz_uint8 *pLZ_code_buf = d->m_pLZ_code_buf, *pLZ_flags = d->m_pLZ_flags;
mz_uint cur_pos = lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;
while ((d->m_src_buf_left) || ((d->m_flush) && (lookahead_size))) {
const mz_uint TDEFL_COMP_FAST_LOOKAHEAD_SIZE = 4096;
mz_uint dst_pos =
(lookahead_pos + lookahead_size) & TDEFL_LZ_DICT_SIZE_MASK;
mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(
d->m_src_buf_left, TDEFL_COMP_FAST_LOOKAHEAD_SIZE - lookahead_size);
d->m_src_buf_left -= num_bytes_to_process;
lookahead_size += num_bytes_to_process;
while (num_bytes_to_process) {
mz_uint32 n = MZ_MIN(TDEFL_LZ_DICT_SIZE - dst_pos, num_bytes_to_process);
memcpy(d->m_dict + dst_pos, d->m_pSrc, n);
if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
memcpy(d->m_dict + TDEFL_LZ_DICT_SIZE + dst_pos, d->m_pSrc,
MZ_MIN(n, (TDEFL_MAX_MATCH_LEN - 1) - dst_pos));
d->m_pSrc += n;
dst_pos = (dst_pos + n) & TDEFL_LZ_DICT_SIZE_MASK;
num_bytes_to_process -= n;
}
dict_size = MZ_MIN(TDEFL_LZ_DICT_SIZE - lookahead_size, dict_size);
if ((!d->m_flush) && (lookahead_size < TDEFL_COMP_FAST_LOOKAHEAD_SIZE))
break;
while (lookahead_size >= 4) {
mz_uint cur_match_dist, cur_match_len = 1;
mz_uint8 *pCur_dict = d->m_dict + cur_pos;
mz_uint first_trigram = (*(const mz_uint32 *)pCur_dict) & 0xFFFFFF;
mz_uint hash =
(first_trigram ^ (first_trigram >> (24 - (TDEFL_LZ_HASH_BITS - 8)))) &
TDEFL_LEVEL1_HASH_SIZE_MASK;
mz_uint probe_pos = d->m_hash[hash];
d->m_hash[hash] = (mz_uint16)lookahead_pos;
if (((cur_match_dist = (mz_uint16)(lookahead_pos - probe_pos)) <=
dict_size) &&
((mz_uint32)(
*(d->m_dict + (probe_pos & TDEFL_LZ_DICT_SIZE_MASK)) |
(*(d->m_dict + ((probe_pos & TDEFL_LZ_DICT_SIZE_MASK) + 1))
<< 8) |
(*(d->m_dict + ((probe_pos & TDEFL_LZ_DICT_SIZE_MASK) + 2))
<< 16)) == first_trigram)) {
const mz_uint16 *p = (const mz_uint16 *)pCur_dict;
const mz_uint16 *q =
(const mz_uint16 *)(d->m_dict +
(probe_pos & TDEFL_LZ_DICT_SIZE_MASK));
mz_uint32 probe_len = 32;
do {
} while ((*(++p) == *(++q)) && (*(++p) == *(++q)) &&
(*(++p) == *(++q)) && (*(++p) == *(++q)) && (--probe_len > 0));
cur_match_len = ((mz_uint)(p - (const mz_uint16 *)pCur_dict) * 2) +
(mz_uint)(*(const mz_uint8 *)p == *(const mz_uint8 *)q);
if (!probe_len)
cur_match_len = cur_match_dist ? TDEFL_MAX_MATCH_LEN : 0;
if ((cur_match_len < TDEFL_MIN_MATCH_LEN) ||
((cur_match_len == TDEFL_MIN_MATCH_LEN) &&
(cur_match_dist >= 8U * 1024U))) {
cur_match_len = 1;
*pLZ_code_buf++ = (mz_uint8)first_trigram;
*pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
d->m_huff_count[0][(mz_uint8)first_trigram]++;
} else {
mz_uint32 s0, s1;
cur_match_len = MZ_MIN(cur_match_len, lookahead_size);
MZ_ASSERT((cur_match_len >= TDEFL_MIN_MATCH_LEN) &&
(cur_match_dist >= 1) &&
(cur_match_dist <= TDEFL_LZ_DICT_SIZE));
cur_match_dist--;
pLZ_code_buf[0] = (mz_uint8)(cur_match_len - TDEFL_MIN_MATCH_LEN);
*(mz_uint16 *)(&pLZ_code_buf[1]) = (mz_uint16)cur_match_dist;
pLZ_code_buf += 3;
*pLZ_flags = (mz_uint8)((*pLZ_flags >> 1) | 0x80);
s0 = s_tdefl_small_dist_sym[cur_match_dist & 511];
s1 = s_tdefl_large_dist_sym[cur_match_dist >> 8];
d->m_huff_count[1][(cur_match_dist < 512) ? s0 : s1]++;
d->m_huff_count[0][s_tdefl_len_sym[cur_match_len -
TDEFL_MIN_MATCH_LEN]]++;
}
} else {
*pLZ_code_buf++ = (mz_uint8)first_trigram;
*pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
d->m_huff_count[0][(mz_uint8)first_trigram]++;
}
if (--num_flags_left == 0) {
num_flags_left = 8;
pLZ_flags = pLZ_code_buf++;
}
total_lz_bytes += cur_match_len;
lookahead_pos += cur_match_len;
dict_size = MZ_MIN(dict_size + cur_match_len, TDEFL_LZ_DICT_SIZE);
cur_pos = (cur_pos + cur_match_len) & TDEFL_LZ_DICT_SIZE_MASK;
MZ_ASSERT(lookahead_size >= cur_match_len);
lookahead_size -= cur_match_len;
if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) {
int n;
d->m_lookahead_pos = lookahead_pos;
d->m_lookahead_size = lookahead_size;
d->m_dict_size = dict_size;
d->m_total_lz_bytes = total_lz_bytes;
d->m_pLZ_code_buf = pLZ_code_buf;
d->m_pLZ_flags = pLZ_flags;
d->m_num_flags_left = num_flags_left;
if ((n = tdefl_flush_block(d, 0)) != 0)
return (n < 0) ? MZ_FALSE : MZ_TRUE;
total_lz_bytes = d->m_total_lz_bytes;
pLZ_code_buf = d->m_pLZ_code_buf;
pLZ_flags = d->m_pLZ_flags;
num_flags_left = d->m_num_flags_left;
}
}
while (lookahead_size) {
mz_uint8 lit = d->m_dict[cur_pos];
total_lz_bytes++;
*pLZ_code_buf++ = lit;
*pLZ_flags = (mz_uint8)(*pLZ_flags >> 1);
if (--num_flags_left == 0) {
num_flags_left = 8;
pLZ_flags = pLZ_code_buf++;
}
d->m_huff_count[0][lit]++;
lookahead_pos++;
dict_size = MZ_MIN(dict_size + 1, TDEFL_LZ_DICT_SIZE);
cur_pos = (cur_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK;
lookahead_size--;
if (pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) {
int n;
d->m_lookahead_pos = lookahead_pos;
d->m_lookahead_size = lookahead_size;
d->m_dict_size = dict_size;
d->m_total_lz_bytes = total_lz_bytes;
d->m_pLZ_code_buf = pLZ_code_buf;
d->m_pLZ_flags = pLZ_flags;
d->m_num_flags_left = num_flags_left;
if ((n = tdefl_flush_block(d, 0)) != 0)
return (n < 0) ? MZ_FALSE : MZ_TRUE;
total_lz_bytes = d->m_total_lz_bytes;
pLZ_code_buf = d->m_pLZ_code_buf;
pLZ_flags = d->m_pLZ_flags;
num_flags_left = d->m_num_flags_left;
}
}
}
d->m_lookahead_pos = lookahead_pos;
d->m_lookahead_size = lookahead_size;
d->m_dict_size = dict_size;
d->m_total_lz_bytes = total_lz_bytes;
d->m_pLZ_code_buf = pLZ_code_buf;
d->m_pLZ_flags = pLZ_flags;
d->m_num_flags_left = num_flags_left;
return MZ_TRUE;
}
#endif // MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
static MZ_FORCEINLINE void tdefl_record_literal(tdefl_compressor *d,
mz_uint8 lit) {
d->m_total_lz_bytes++;
*d->m_pLZ_code_buf++ = lit;
*d->m_pLZ_flags = (mz_uint8)(*d->m_pLZ_flags >> 1);
if (--d->m_num_flags_left == 0) {
d->m_num_flags_left = 8;
d->m_pLZ_flags = d->m_pLZ_code_buf++;
}
d->m_huff_count[0][lit]++;
}
static MZ_FORCEINLINE void
tdefl_record_match(tdefl_compressor *d, mz_uint match_len, mz_uint match_dist) {
mz_uint32 s0, s1;
MZ_ASSERT((match_len >= TDEFL_MIN_MATCH_LEN) && (match_dist >= 1) &&
(match_dist <= TDEFL_LZ_DICT_SIZE));
d->m_total_lz_bytes += match_len;
d->m_pLZ_code_buf[0] = (mz_uint8)(match_len - TDEFL_MIN_MATCH_LEN);
match_dist -= 1;
d->m_pLZ_code_buf[1] = (mz_uint8)(match_dist & 0xFF);
d->m_pLZ_code_buf[2] = (mz_uint8)(match_dist >> 8);
d->m_pLZ_code_buf += 3;
*d->m_pLZ_flags = (mz_uint8)((*d->m_pLZ_flags >> 1) | 0x80);
if (--d->m_num_flags_left == 0) {
d->m_num_flags_left = 8;
d->m_pLZ_flags = d->m_pLZ_code_buf++;
}
s0 = s_tdefl_small_dist_sym[match_dist & 511];
s1 = s_tdefl_large_dist_sym[(match_dist >> 8) & 127];
d->m_huff_count[1][(match_dist < 512) ? s0 : s1]++;
if (match_len >= TDEFL_MIN_MATCH_LEN)
d->m_huff_count[0][s_tdefl_len_sym[match_len - TDEFL_MIN_MATCH_LEN]]++;
}
static mz_bool tdefl_compress_normal(tdefl_compressor *d) {
const mz_uint8 *pSrc = d->m_pSrc;
size_t src_buf_left = d->m_src_buf_left;
tdefl_flush flush = d->m_flush;
while ((src_buf_left) || ((flush) && (d->m_lookahead_size))) {
mz_uint len_to_move, cur_match_dist, cur_match_len, cur_pos;
// Update dictionary and hash chains. Keeps the lookahead size equal to
// TDEFL_MAX_MATCH_LEN.
if ((d->m_lookahead_size + d->m_dict_size) >= (TDEFL_MIN_MATCH_LEN - 1)) {
mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) &
TDEFL_LZ_DICT_SIZE_MASK,
ins_pos = d->m_lookahead_pos + d->m_lookahead_size - 2;
mz_uint hash = (d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK]
<< TDEFL_LZ_HASH_SHIFT) ^
d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK];
mz_uint num_bytes_to_process = (mz_uint)MZ_MIN(
src_buf_left, TDEFL_MAX_MATCH_LEN - d->m_lookahead_size);
const mz_uint8 *pSrc_end = pSrc + num_bytes_to_process;
src_buf_left -= num_bytes_to_process;
d->m_lookahead_size += num_bytes_to_process;
while (pSrc != pSrc_end) {
mz_uint8 c = *pSrc++;
d->m_dict[dst_pos] = c;
if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;
hash = ((hash << TDEFL_LZ_HASH_SHIFT) ^ c) & (TDEFL_LZ_HASH_SIZE - 1);
d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash];
d->m_hash[hash] = (mz_uint16)(ins_pos);
dst_pos = (dst_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK;
ins_pos++;
}
} else {
while ((src_buf_left) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN)) {
mz_uint8 c = *pSrc++;
mz_uint dst_pos = (d->m_lookahead_pos + d->m_lookahead_size) &
TDEFL_LZ_DICT_SIZE_MASK;
src_buf_left--;
d->m_dict[dst_pos] = c;
if (dst_pos < (TDEFL_MAX_MATCH_LEN - 1))
d->m_dict[TDEFL_LZ_DICT_SIZE + dst_pos] = c;
if ((++d->m_lookahead_size + d->m_dict_size) >= TDEFL_MIN_MATCH_LEN) {
mz_uint ins_pos = d->m_lookahead_pos + (d->m_lookahead_size - 1) - 2;
mz_uint hash = ((d->m_dict[ins_pos & TDEFL_LZ_DICT_SIZE_MASK]
<< (TDEFL_LZ_HASH_SHIFT * 2)) ^
(d->m_dict[(ins_pos + 1) & TDEFL_LZ_DICT_SIZE_MASK]
<< TDEFL_LZ_HASH_SHIFT) ^
c) &
(TDEFL_LZ_HASH_SIZE - 1);
d->m_next[ins_pos & TDEFL_LZ_DICT_SIZE_MASK] = d->m_hash[hash];
d->m_hash[hash] = (mz_uint16)(ins_pos);
}
}
}
d->m_dict_size =
MZ_MIN(TDEFL_LZ_DICT_SIZE - d->m_lookahead_size, d->m_dict_size);
if ((!flush) && (d->m_lookahead_size < TDEFL_MAX_MATCH_LEN))
break;
// Simple lazy/greedy parsing state machine.
len_to_move = 1;
cur_match_dist = 0;
cur_match_len =
d->m_saved_match_len ? d->m_saved_match_len : (TDEFL_MIN_MATCH_LEN - 1);
cur_pos = d->m_lookahead_pos & TDEFL_LZ_DICT_SIZE_MASK;
if (d->m_flags & (TDEFL_RLE_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS)) {
if ((d->m_dict_size) && (!(d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS))) {
mz_uint8 c = d->m_dict[(cur_pos - 1) & TDEFL_LZ_DICT_SIZE_MASK];
cur_match_len = 0;
while (cur_match_len < d->m_lookahead_size) {
if (d->m_dict[cur_pos + cur_match_len] != c)
break;
cur_match_len++;
}
if (cur_match_len < TDEFL_MIN_MATCH_LEN)
cur_match_len = 0;
else
cur_match_dist = 1;
}
} else {
tdefl_find_match(d, d->m_lookahead_pos, d->m_dict_size,
d->m_lookahead_size, &cur_match_dist, &cur_match_len);
}
if (((cur_match_len == TDEFL_MIN_MATCH_LEN) &&
(cur_match_dist >= 8U * 1024U)) ||
(cur_pos == cur_match_dist) ||
((d->m_flags & TDEFL_FILTER_MATCHES) && (cur_match_len <= 5))) {
cur_match_dist = cur_match_len = 0;
}
if (d->m_saved_match_len) {
if (cur_match_len > d->m_saved_match_len) {
tdefl_record_literal(d, (mz_uint8)d->m_saved_lit);
if (cur_match_len >= 128) {
tdefl_record_match(d, cur_match_len, cur_match_dist);
d->m_saved_match_len = 0;
len_to_move = cur_match_len;
} else {
d->m_saved_lit = d->m_dict[cur_pos];
d->m_saved_match_dist = cur_match_dist;
d->m_saved_match_len = cur_match_len;
}
} else {
tdefl_record_match(d, d->m_saved_match_len, d->m_saved_match_dist);
len_to_move = d->m_saved_match_len - 1;
d->m_saved_match_len = 0;
}
} else if (!cur_match_dist)
tdefl_record_literal(d,
d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)]);
else if ((d->m_greedy_parsing) || (d->m_flags & TDEFL_RLE_MATCHES) ||
(cur_match_len >= 128)) {
tdefl_record_match(d, cur_match_len, cur_match_dist);
len_to_move = cur_match_len;
} else {
d->m_saved_lit = d->m_dict[MZ_MIN(cur_pos, sizeof(d->m_dict) - 1)];
d->m_saved_match_dist = cur_match_dist;
d->m_saved_match_len = cur_match_len;
}
// Move the lookahead forward by len_to_move bytes.
d->m_lookahead_pos += len_to_move;
MZ_ASSERT(d->m_lookahead_size >= len_to_move);
d->m_lookahead_size -= len_to_move;
d->m_dict_size = MZ_MIN(d->m_dict_size + len_to_move, TDEFL_LZ_DICT_SIZE);
// Check if it's time to flush the current LZ codes to the internal output
// buffer.
if ((d->m_pLZ_code_buf > &d->m_lz_code_buf[TDEFL_LZ_CODE_BUF_SIZE - 8]) ||
((d->m_total_lz_bytes > 31 * 1024) &&
(((((mz_uint)(d->m_pLZ_code_buf - d->m_lz_code_buf) * 115) >> 7) >=
d->m_total_lz_bytes) ||
(d->m_flags & TDEFL_FORCE_ALL_RAW_BLOCKS)))) {
int n;
d->m_pSrc = pSrc;
d->m_src_buf_left = src_buf_left;
if ((n = tdefl_flush_block(d, 0)) != 0)
return (n < 0) ? MZ_FALSE : MZ_TRUE;
}
}
d->m_pSrc = pSrc;
d->m_src_buf_left = src_buf_left;
return MZ_TRUE;
}
static tdefl_status tdefl_flush_output_buffer(tdefl_compressor *d) {
if (d->m_pIn_buf_size) {
*d->m_pIn_buf_size = d->m_pSrc - (const mz_uint8 *)d->m_pIn_buf;
}
if (d->m_pOut_buf_size) {
size_t n = MZ_MIN(*d->m_pOut_buf_size - d->m_out_buf_ofs,
d->m_output_flush_remaining);
memcpy((mz_uint8 *)d->m_pOut_buf + d->m_out_buf_ofs,
d->m_output_buf + d->m_output_flush_ofs, n);
d->m_output_flush_ofs += (mz_uint)n;
d->m_output_flush_remaining -= (mz_uint)n;
d->m_out_buf_ofs += n;
*d->m_pOut_buf_size = d->m_out_buf_ofs;
}
return (d->m_finished && !d->m_output_flush_remaining) ? TDEFL_STATUS_DONE
: TDEFL_STATUS_OKAY;
}
tdefl_status tdefl_compress(tdefl_compressor *d, const void *pIn_buf,
size_t *pIn_buf_size, void *pOut_buf,
size_t *pOut_buf_size, tdefl_flush flush) {
if (!d) {
if (pIn_buf_size)
*pIn_buf_size = 0;
if (pOut_buf_size)
*pOut_buf_size = 0;
return TDEFL_STATUS_BAD_PARAM;
}
d->m_pIn_buf = pIn_buf;
d->m_pIn_buf_size = pIn_buf_size;
d->m_pOut_buf = pOut_buf;
d->m_pOut_buf_size = pOut_buf_size;
d->m_pSrc = (const mz_uint8 *)(pIn_buf);
d->m_src_buf_left = pIn_buf_size ? *pIn_buf_size : 0;
d->m_out_buf_ofs = 0;
d->m_flush = flush;
if (((d->m_pPut_buf_func != NULL) ==
((pOut_buf != NULL) || (pOut_buf_size != NULL))) ||
(d->m_prev_return_status != TDEFL_STATUS_OKAY) ||
(d->m_wants_to_finish && (flush != TDEFL_FINISH)) ||
(pIn_buf_size && *pIn_buf_size && !pIn_buf) ||
(pOut_buf_size && *pOut_buf_size && !pOut_buf)) {
if (pIn_buf_size)
*pIn_buf_size = 0;
if (pOut_buf_size)
*pOut_buf_size = 0;
return (d->m_prev_return_status = TDEFL_STATUS_BAD_PARAM);
}
d->m_wants_to_finish |= (flush == TDEFL_FINISH);
if ((d->m_output_flush_remaining) || (d->m_finished))
return (d->m_prev_return_status = tdefl_flush_output_buffer(d));
#if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
if (((d->m_flags & TDEFL_MAX_PROBES_MASK) == 1) &&
((d->m_flags & TDEFL_GREEDY_PARSING_FLAG) != 0) &&
((d->m_flags & (TDEFL_FILTER_MATCHES | TDEFL_FORCE_ALL_RAW_BLOCKS |
TDEFL_RLE_MATCHES)) == 0)) {
if (!tdefl_compress_fast(d))
return d->m_prev_return_status;
} else
#endif // #if MINIZ_USE_UNALIGNED_LOADS_AND_STORES && MINIZ_LITTLE_ENDIAN
{
if (!tdefl_compress_normal(d))
return d->m_prev_return_status;
}
if ((d->m_flags & (TDEFL_WRITE_ZLIB_HEADER | TDEFL_COMPUTE_ADLER32)) &&
(pIn_buf))
d->m_adler32 =
(mz_uint32)mz_adler32(d->m_adler32, (const mz_uint8 *)pIn_buf,
d->m_pSrc - (const mz_uint8 *)pIn_buf);
if ((flush) && (!d->m_lookahead_size) && (!d->m_src_buf_left) &&
(!d->m_output_flush_remaining)) {
if (tdefl_flush_block(d, flush) < 0)
return d->m_prev_return_status;
d->m_finished = (flush == TDEFL_FINISH);
if (flush == TDEFL_FULL_FLUSH) {
MZ_CLEAR_OBJ(d->m_hash);
MZ_CLEAR_OBJ(d->m_next);
d->m_dict_size = 0;
}
}
return (d->m_prev_return_status = tdefl_flush_output_buffer(d));
}
tdefl_status tdefl_compress_buffer(tdefl_compressor *d, const void *pIn_buf,
size_t in_buf_size, tdefl_flush flush) {
MZ_ASSERT(d->m_pPut_buf_func);
return tdefl_compress(d, pIn_buf, &in_buf_size, NULL, NULL, flush);
}
tdefl_status tdefl_init(tdefl_compressor *d,
tdefl_put_buf_func_ptr pPut_buf_func,
void *pPut_buf_user, int flags) {
d->m_pPut_buf_func = pPut_buf_func;
d->m_pPut_buf_user = pPut_buf_user;
d->m_flags = (mz_uint)(flags);
d->m_max_probes[0] = 1 + ((flags & 0xFFF) + 2) / 3;
d->m_greedy_parsing = (flags & TDEFL_GREEDY_PARSING_FLAG) != 0;
d->m_max_probes[1] = 1 + (((flags & 0xFFF) >> 2) + 2) / 3;
if (!(flags & TDEFL_NONDETERMINISTIC_PARSING_FLAG))
MZ_CLEAR_OBJ(d->m_hash);
d->m_lookahead_pos = d->m_lookahead_size = d->m_dict_size =
d->m_total_lz_bytes = d->m_lz_code_buf_dict_pos = d->m_bits_in = 0;
d->m_output_flush_ofs = d->m_output_flush_remaining = d->m_finished =
d->m_block_index = d->m_bit_buffer = d->m_wants_to_finish = 0;
d->m_pLZ_code_buf = d->m_lz_code_buf + 1;
d->m_pLZ_flags = d->m_lz_code_buf;
d->m_num_flags_left = 8;
d->m_pOutput_buf = d->m_output_buf;
d->m_pOutput_buf_end = d->m_output_buf;
d->m_prev_return_status = TDEFL_STATUS_OKAY;
d->m_saved_match_dist = d->m_saved_match_len = d->m_saved_lit = 0;
d->m_adler32 = 1;
d->m_pIn_buf = NULL;
d->m_pOut_buf = NULL;
d->m_pIn_buf_size = NULL;
d->m_pOut_buf_size = NULL;
d->m_flush = TDEFL_NO_FLUSH;
d->m_pSrc = NULL;
d->m_src_buf_left = 0;
d->m_out_buf_ofs = 0;
memset(&d->m_huff_count[0][0], 0,
sizeof(d->m_huff_count[0][0]) * TDEFL_MAX_HUFF_SYMBOLS_0);
memset(&d->m_huff_count[1][0], 0,
sizeof(d->m_huff_count[1][0]) * TDEFL_MAX_HUFF_SYMBOLS_1);
return TDEFL_STATUS_OKAY;
}
tdefl_status tdefl_get_prev_return_status(tdefl_compressor *d) {
return d->m_prev_return_status;
}
mz_uint32 tdefl_get_adler32(tdefl_compressor *d) { return d->m_adler32; }
mz_bool tdefl_compress_mem_to_output(const void *pBuf, size_t buf_len,
tdefl_put_buf_func_ptr pPut_buf_func,
void *pPut_buf_user, int flags) {
tdefl_compressor *pComp;
mz_bool succeeded;
if (((buf_len) && (!pBuf)) || (!pPut_buf_func))
return MZ_FALSE;
pComp = (tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor));
if (!pComp)
return MZ_FALSE;
succeeded = (tdefl_init(pComp, pPut_buf_func, pPut_buf_user, flags) ==
TDEFL_STATUS_OKAY);
succeeded =
succeeded && (tdefl_compress_buffer(pComp, pBuf, buf_len, TDEFL_FINISH) ==
TDEFL_STATUS_DONE);
MZ_FREE(pComp);
return succeeded;
}
typedef struct {
size_t m_size, m_capacity;
mz_uint8 *m_pBuf;
mz_bool m_expandable;
} tdefl_output_buffer;
static mz_bool tdefl_output_buffer_putter(const void *pBuf, int len,
void *pUser) {
tdefl_output_buffer *p = (tdefl_output_buffer *)pUser;
size_t new_size = p->m_size + len;
if (new_size > p->m_capacity) {
size_t new_capacity = p->m_capacity;
mz_uint8 *pNew_buf;
if (!p->m_expandable)
return MZ_FALSE;
do {
new_capacity = MZ_MAX(128U, new_capacity << 1U);
} while (new_size > new_capacity);
pNew_buf = (mz_uint8 *)MZ_REALLOC(p->m_pBuf, new_capacity);
if (!pNew_buf)
return MZ_FALSE;
p->m_pBuf = pNew_buf;
p->m_capacity = new_capacity;
}
memcpy((mz_uint8 *)p->m_pBuf + p->m_size, pBuf, len);
p->m_size = new_size;
return MZ_TRUE;
}
void *tdefl_compress_mem_to_heap(const void *pSrc_buf, size_t src_buf_len,
size_t *pOut_len, int flags) {
tdefl_output_buffer out_buf;
MZ_CLEAR_OBJ(out_buf);
if (!pOut_len)
return MZ_FALSE;
else
*pOut_len = 0;
out_buf.m_expandable = MZ_TRUE;
if (!tdefl_compress_mem_to_output(
pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags))
return NULL;
*pOut_len = out_buf.m_size;
return out_buf.m_pBuf;
}
size_t tdefl_compress_mem_to_mem(void *pOut_buf, size_t out_buf_len,
const void *pSrc_buf, size_t src_buf_len,
int flags) {
tdefl_output_buffer out_buf;
MZ_CLEAR_OBJ(out_buf);
if (!pOut_buf)
return 0;
out_buf.m_pBuf = (mz_uint8 *)pOut_buf;
out_buf.m_capacity = out_buf_len;
if (!tdefl_compress_mem_to_output(
pSrc_buf, src_buf_len, tdefl_output_buffer_putter, &out_buf, flags))
return 0;
return out_buf.m_size;
}
#ifndef MINIZ_NO_ZLIB_APIS
static const mz_uint s_tdefl_num_probes[11] = {0, 1, 6, 32, 16, 32,
128, 256, 512, 768, 1500};
// level may actually range from [0,10] (10 is a "hidden" max level, where we
// want a bit more compression and it's fine if throughput to fall off a cliff
// on some files).
mz_uint tdefl_create_comp_flags_from_zip_params(int level, int window_bits,
int strategy) {
mz_uint comp_flags =
s_tdefl_num_probes[(level >= 0) ? MZ_MIN(10, level) : MZ_DEFAULT_LEVEL] |
((level <= 3) ? TDEFL_GREEDY_PARSING_FLAG : 0);
if (window_bits > 0)
comp_flags |= TDEFL_WRITE_ZLIB_HEADER;
if (!level)
comp_flags |= TDEFL_FORCE_ALL_RAW_BLOCKS;
else if (strategy == MZ_FILTERED)
comp_flags |= TDEFL_FILTER_MATCHES;
else if (strategy == MZ_HUFFMAN_ONLY)
comp_flags &= ~TDEFL_MAX_PROBES_MASK;
else if (strategy == MZ_FIXED)
comp_flags |= TDEFL_FORCE_ALL_STATIC_BLOCKS;
else if (strategy == MZ_RLE)
comp_flags |= TDEFL_RLE_MATCHES;
return comp_flags;
}
#endif // MINIZ_NO_ZLIB_APIS
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4204) // nonstandard extension used : non-constant
// aggregate initializer (also supported by GNU
// C and C99, so no big deal)
#endif
// Simple PNG writer function by Alex Evans, 2011. Released into the public
// domain: https://gist.github.com/908299, more context at
// http://altdevblogaday.org/2011/04/06/a-smaller-jpg-encoder/.
// This is actually a modification of Alex's original code so PNG files
// generated by this function pass pngcheck.
void *tdefl_write_image_to_png_file_in_memory_ex(const void *pImage, int w,
int h, int num_chans,
size_t *pLen_out,
mz_uint level, mz_bool flip) {
// Using a local copy of this array here in case MINIZ_NO_ZLIB_APIS was
// defined.
static const mz_uint s_tdefl_png_num_probes[11] = {
0, 1, 6, 32, 16, 32, 128, 256, 512, 768, 1500};
tdefl_compressor *pComp =
(tdefl_compressor *)MZ_MALLOC(sizeof(tdefl_compressor));
tdefl_output_buffer out_buf;
int i, bpl = w * num_chans, y, z;
mz_uint32 c;
*pLen_out = 0;
if (!pComp)
return NULL;
MZ_CLEAR_OBJ(out_buf);
out_buf.m_expandable = MZ_TRUE;
out_buf.m_capacity = 57 + MZ_MAX(64, (1 + bpl) * h);
if (NULL == (out_buf.m_pBuf = (mz_uint8 *)MZ_MALLOC(out_buf.m_capacity))) {
MZ_FREE(pComp);
return NULL;
}
// write dummy header
for (z = 41; z; --z)
tdefl_output_buffer_putter(&z, 1, &out_buf);
// compress image data
tdefl_init(pComp, tdefl_output_buffer_putter, &out_buf,
s_tdefl_png_num_probes[MZ_MIN(10, level)] |
TDEFL_WRITE_ZLIB_HEADER);
for (y = 0; y < h; ++y) {
tdefl_compress_buffer(pComp, &z, 1, TDEFL_NO_FLUSH);
tdefl_compress_buffer(pComp,
(mz_uint8 *)pImage + (flip ? (h - 1 - y) : y) * bpl,
bpl, TDEFL_NO_FLUSH);
}
if (tdefl_compress_buffer(pComp, NULL, 0, TDEFL_FINISH) !=
TDEFL_STATUS_DONE) {
MZ_FREE(pComp);
MZ_FREE(out_buf.m_pBuf);
return NULL;
}
// write real header
*pLen_out = out_buf.m_size - 41;
{
static const mz_uint8 chans[] = {0x00, 0x00, 0x04, 0x02, 0x06};
mz_uint8 pnghdr[41] = {0x89,
0x50,
0x4e,
0x47,
0x0d,
0x0a,
0x1a,
0x0a,
0x00,
0x00,
0x00,
0x0d,
0x49,
0x48,
0x44,
0x52,
0,
0,
(mz_uint8)(w >> 8),
(mz_uint8)w,
0,
0,
(mz_uint8)(h >> 8),
(mz_uint8)h,
8,
chans[num_chans],
0,
0,
0,
0,
0,
0,
0,
(mz_uint8)(*pLen_out >> 24),
(mz_uint8)(*pLen_out >> 16),
(mz_uint8)(*pLen_out >> 8),
(mz_uint8)*pLen_out,
0x49,
0x44,
0x41,
0x54};
c = (mz_uint32)mz_crc32(MZ_CRC32_INIT, pnghdr + 12, 17);
for (i = 0; i < 4; ++i, c <<= 8)
((mz_uint8 *)(pnghdr + 29))[i] = (mz_uint8)(c >> 24);
memcpy(out_buf.m_pBuf, pnghdr, 41);
}
// write footer (IDAT CRC-32, followed by IEND chunk)
if (!tdefl_output_buffer_putter(
"\0\0\0\0\0\0\0\0\x49\x45\x4e\x44\xae\x42\x60\x82", 16, &out_buf)) {
*pLen_out = 0;
MZ_FREE(pComp);
MZ_FREE(out_buf.m_pBuf);
return NULL;
}
c = (mz_uint32)mz_crc32(MZ_CRC32_INIT, out_buf.m_pBuf + 41 - 4,
*pLen_out + 4);
for (i = 0; i < 4; ++i, c <<= 8)
(out_buf.m_pBuf + out_buf.m_size - 16)[i] = (mz_uint8)(c >> 24);
// compute final size of file, grab compressed data buffer and return
*pLen_out += 57;
MZ_FREE(pComp);
return out_buf.m_pBuf;
}
void *tdefl_write_image_to_png_file_in_memory(const void *pImage, int w, int h,
int num_chans, size_t *pLen_out) {
// Level 6 corresponds to TDEFL_DEFAULT_MAX_PROBES or MZ_DEFAULT_LEVEL (but we
// can't depend on MZ_DEFAULT_LEVEL being available in case the zlib API's
// where #defined out)
return tdefl_write_image_to_png_file_in_memory_ex(pImage, w, h, num_chans,
pLen_out, 6, MZ_FALSE);
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
// ------------------- .ZIP archive reading
#ifndef MINIZ_NO_ARCHIVE_APIS
#ifdef MINIZ_NO_STDIO
#define MZ_FILE void *
#else
#include <stdio.h>
#include <sys/stat.h>
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <windows.h>
static wchar_t *str2wstr(const char *str) {
int len = strlen(str) + 1;
wchar_t *wstr = malloc(len * sizeof(wchar_t));
MultiByteToWideChar(CP_UTF8, 0, str, len * sizeof(char), wstr, len);
return wstr;
}
static FILE *mz_fopen(const char *pFilename, const char *pMode) {
FILE *pFile = NULL;
wchar_t *wFilename = str2wstr(pFilename);
wchar_t *wMode = str2wstr(pMode);
_wfopen_s(&pFile, wFilename, wMode);
free(wFilename);
free(wMode);
return pFile;
}
static FILE *mz_freopen(const char *pPath, const char *pMode, FILE *pStream) {
FILE *pFile = NULL;
wchar_t *wPath = str2wstr(pPath);
wchar_t *wMode = str2wstr(pMode);
int res = _wfreopen_s(&pFile, wPath, wMode, pStream);
free(wPath);
free(wMode);
if (res)
return NULL;
return pFile;
}
#ifndef MINIZ_NO_TIME
#include <sys/utime.h>
#endif
#define MZ_FILE FILE
#define MZ_FOPEN mz_fopen
#define MZ_FCLOSE fclose
#define MZ_FREAD fread
#define MZ_FWRITE fwrite
#define MZ_FTELL64 _ftelli64
#define MZ_FSEEK64 _fseeki64
#define MZ_FILE_STAT_STRUCT _stat
#define MZ_FILE_STAT _stat
#define MZ_FFLUSH fflush
#define MZ_FREOPEN mz_freopen
#define MZ_DELETE_FILE remove
#elif defined(__MINGW32__)
#ifndef MINIZ_NO_TIME
#include <sys/utime.h>
#endif
#define MZ_FILE FILE
#define MZ_FOPEN(f, m) mz_fopen
#define MZ_FCLOSE fclose
#define MZ_FREAD fread
#define MZ_FWRITE fwrite
#define MZ_FTELL64 ftell
#define MZ_FSEEK64 fseek
#define MZ_FILE_STAT_STRUCT _stat
#define MZ_FILE_STAT _stat
#define MZ_FFLUSH fflush
#define MZ_FREOPEN(f, m, s) mz_freopen
#define MZ_DELETE_FILE remove
#elif defined(__TINYC__)
#ifndef MINIZ_NO_TIME
#include <sys/utime.h>
#endif
#define MZ_FILE FILE
#define MZ_FOPEN(f, m) fopen(f, m)
#define MZ_FCLOSE fclose
#define MZ_FREAD fread
#define MZ_FWRITE fwrite
#define MZ_FTELL64 ftell
#define MZ_FSEEK64 fseek
#define MZ_FILE_STAT_STRUCT stat
#define MZ_FILE_STAT stat
#define MZ_FFLUSH fflush
#define MZ_FREOPEN(f, m, s) freopen(f, m, s)
#define MZ_DELETE_FILE remove
#elif defined(__GNUC__) && _LARGEFILE64_SOURCE
#ifndef MINIZ_NO_TIME
#include <utime.h>
#endif
#define MZ_FILE FILE
#define MZ_FOPEN(f, m) fopen64(f, m)
#define MZ_FCLOSE fclose
#define MZ_FREAD fread
#define MZ_FWRITE fwrite
#define MZ_FTELL64 ftello64
#define MZ_FSEEK64 fseeko64
#define MZ_FILE_STAT_STRUCT stat64
#define MZ_FILE_STAT stat64
#define MZ_FFLUSH fflush
#define MZ_FREOPEN(p, m, s) freopen64(p, m, s)
#define MZ_DELETE_FILE remove
#else
#ifndef MINIZ_NO_TIME
#include <utime.h>
#endif
#define MZ_FILE FILE
#define MZ_FOPEN(f, m) fopen(f, m)
#define MZ_FCLOSE fclose
#define MZ_FREAD fread
#define MZ_FWRITE fwrite
#if _FILE_OFFSET_BITS == 64 || _POSIX_C_SOURCE >= 200112L
#define MZ_FTELL64 ftello
#define MZ_FSEEK64 fseeko
#else
#define MZ_FTELL64 ftell
#define MZ_FSEEK64 fseek
#endif
#define MZ_FILE_STAT_STRUCT stat
#define MZ_FILE_STAT stat
#define MZ_FFLUSH fflush
#define MZ_FREOPEN(f, m, s) freopen(f, m, s)
#define MZ_DELETE_FILE remove
#endif // #ifdef _MSC_VER
#endif // #ifdef MINIZ_NO_STDIO
#define MZ_TOLOWER(c) ((((c) >= 'A') && ((c) <= 'Z')) ? ((c) - 'A' + 'a') : (c))
// Various ZIP archive enums. To completely avoid cross platform compiler
// alignment and platform endian issues, miniz.c doesn't use structs for any of
// this stuff.
enum {
// ZIP archive identifiers and record sizes
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG = 0x06054b50,
MZ_ZIP_CENTRAL_DIR_HEADER_SIG = 0x02014b50,
MZ_ZIP_LOCAL_DIR_HEADER_SIG = 0x04034b50,
MZ_ZIP_LOCAL_DIR_HEADER_SIZE = 30,
MZ_ZIP_CENTRAL_DIR_HEADER_SIZE = 46,
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE = 22,
/* ZIP64 archive identifier and record sizes */
MZ_ZIP64_END_OF_CENTRAL_DIR_HEADER_SIG = 0x06064b50,
MZ_ZIP64_END_OF_CENTRAL_DIR_LOCATOR_SIG = 0x07064b50,
MZ_ZIP64_END_OF_CENTRAL_DIR_HEADER_SIZE = 56,
MZ_ZIP64_END_OF_CENTRAL_DIR_LOCATOR_SIZE = 20,
MZ_ZIP64_EXTENDED_INFORMATION_FIELD_HEADER_ID = 0x0001,
MZ_ZIP_DATA_DESCRIPTOR_ID = 0x08074b50,
MZ_ZIP_DATA_DESCRIPTER_SIZE64 = 24,
MZ_ZIP_DATA_DESCRIPTER_SIZE32 = 16,
// Central directory header record offsets
MZ_ZIP_CDH_SIG_OFS = 0,
MZ_ZIP_CDH_VERSION_MADE_BY_OFS = 4,
MZ_ZIP_CDH_VERSION_NEEDED_OFS = 6,
MZ_ZIP_CDH_BIT_FLAG_OFS = 8,
MZ_ZIP_CDH_METHOD_OFS = 10,
MZ_ZIP_CDH_FILE_TIME_OFS = 12,
MZ_ZIP_CDH_FILE_DATE_OFS = 14,
MZ_ZIP_CDH_CRC32_OFS = 16,
MZ_ZIP_CDH_COMPRESSED_SIZE_OFS = 20,
MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS = 24,
MZ_ZIP_CDH_FILENAME_LEN_OFS = 28,
MZ_ZIP_CDH_EXTRA_LEN_OFS = 30,
MZ_ZIP_CDH_COMMENT_LEN_OFS = 32,
MZ_ZIP_CDH_DISK_START_OFS = 34,
MZ_ZIP_CDH_INTERNAL_ATTR_OFS = 36,
MZ_ZIP_CDH_EXTERNAL_ATTR_OFS = 38,
MZ_ZIP_CDH_LOCAL_HEADER_OFS = 42,
// Local directory header offsets
MZ_ZIP_LDH_SIG_OFS = 0,
MZ_ZIP_LDH_VERSION_NEEDED_OFS = 4,
MZ_ZIP_LDH_BIT_FLAG_OFS = 6,
MZ_ZIP_LDH_METHOD_OFS = 8,
MZ_ZIP_LDH_FILE_TIME_OFS = 10,
MZ_ZIP_LDH_FILE_DATE_OFS = 12,
MZ_ZIP_LDH_CRC32_OFS = 14,
MZ_ZIP_LDH_COMPRESSED_SIZE_OFS = 18,
MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS = 22,
MZ_ZIP_LDH_FILENAME_LEN_OFS = 26,
MZ_ZIP_LDH_EXTRA_LEN_OFS = 28,
// End of central directory offsets
MZ_ZIP_ECDH_SIG_OFS = 0,
MZ_ZIP_ECDH_NUM_THIS_DISK_OFS = 4,
MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS = 6,
MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS = 8,
MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS = 10,
MZ_ZIP_ECDH_CDIR_SIZE_OFS = 12,
MZ_ZIP_ECDH_CDIR_OFS_OFS = 16,
MZ_ZIP_ECDH_COMMENT_SIZE_OFS = 20,
/* ZIP64 End of central directory locator offsets */
MZ_ZIP64_ECDL_SIG_OFS = 0, /* 4 bytes */
MZ_ZIP64_ECDL_NUM_DISK_CDIR_OFS = 4, /* 4 bytes */
MZ_ZIP64_ECDL_REL_OFS_TO_ZIP64_ECDR_OFS = 8, /* 8 bytes */
MZ_ZIP64_ECDL_TOTAL_NUMBER_OF_DISKS_OFS = 16, /* 4 bytes */
/* ZIP64 End of central directory header offsets */
MZ_ZIP64_ECDH_SIG_OFS = 0, /* 4 bytes */
MZ_ZIP64_ECDH_SIZE_OF_RECORD_OFS = 4, /* 8 bytes */
MZ_ZIP64_ECDH_VERSION_MADE_BY_OFS = 12, /* 2 bytes */
MZ_ZIP64_ECDH_VERSION_NEEDED_OFS = 14, /* 2 bytes */
MZ_ZIP64_ECDH_NUM_THIS_DISK_OFS = 16, /* 4 bytes */
MZ_ZIP64_ECDH_NUM_DISK_CDIR_OFS = 20, /* 4 bytes */
MZ_ZIP64_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS = 24, /* 8 bytes */
MZ_ZIP64_ECDH_CDIR_TOTAL_ENTRIES_OFS = 32, /* 8 bytes */
MZ_ZIP64_ECDH_CDIR_SIZE_OFS = 40, /* 8 bytes */
MZ_ZIP64_ECDH_CDIR_OFS_OFS = 48, /* 8 bytes */
MZ_ZIP_VERSION_MADE_BY_DOS_FILESYSTEM_ID = 0,
MZ_ZIP_DOS_DIR_ATTRIBUTE_BITFLAG = 0x10,
MZ_ZIP_GENERAL_PURPOSE_BIT_FLAG_IS_ENCRYPTED = 1,
MZ_ZIP_GENERAL_PURPOSE_BIT_FLAG_COMPRESSED_PATCH_FLAG = 32,
MZ_ZIP_GENERAL_PURPOSE_BIT_FLAG_USES_STRONG_ENCRYPTION = 64,
MZ_ZIP_GENERAL_PURPOSE_BIT_FLAG_LOCAL_DIR_IS_MASKED = 8192,
MZ_ZIP_GENERAL_PURPOSE_BIT_FLAG_UTF8 = 1 << 11
};
typedef struct {
void *m_p;
size_t m_size, m_capacity;
mz_uint m_element_size;
} mz_zip_array;
struct mz_zip_internal_state_tag {
mz_zip_array m_central_dir;
mz_zip_array m_central_dir_offsets;
mz_zip_array m_sorted_central_dir_offsets;
/* The flags passed in when the archive is initially opened. */
uint32_t m_init_flags;
/* MZ_TRUE if the archive has a zip64 end of central directory headers, etc.
*/
mz_bool m_zip64;
/* MZ_TRUE if we found zip64 extended info in the central directory (m_zip64
* will also be slammed to true too, even if we didn't find a zip64 end of
* central dir header, etc.) */
mz_bool m_zip64_has_extended_info_fields;
/* These fields are used by the file, FILE, memory, and memory/heap read/write
* helpers. */
MZ_FILE *m_pFile;
mz_uint64 m_file_archive_start_ofs;
void *m_pMem;
size_t m_mem_size;
size_t m_mem_capacity;
};
#define MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(array_ptr, element_size) \
(array_ptr)->m_element_size = element_size
#define MZ_ZIP_ARRAY_ELEMENT(array_ptr, element_type, index) \
((element_type *)((array_ptr)->m_p))[index]
static MZ_FORCEINLINE void mz_zip_array_clear(mz_zip_archive *pZip,
mz_zip_array *pArray) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pArray->m_p);
memset(pArray, 0, sizeof(mz_zip_array));
}
static mz_bool mz_zip_array_ensure_capacity(mz_zip_archive *pZip,
mz_zip_array *pArray,
size_t min_new_capacity,
mz_uint growing) {
void *pNew_p;
size_t new_capacity = min_new_capacity;
MZ_ASSERT(pArray->m_element_size);
if (pArray->m_capacity >= min_new_capacity)
return MZ_TRUE;
if (growing) {
new_capacity = MZ_MAX(1, pArray->m_capacity);
while (new_capacity < min_new_capacity)
new_capacity *= 2;
}
if (NULL == (pNew_p = pZip->m_pRealloc(pZip->m_pAlloc_opaque, pArray->m_p,
pArray->m_element_size, new_capacity)))
return MZ_FALSE;
pArray->m_p = pNew_p;
pArray->m_capacity = new_capacity;
return MZ_TRUE;
}
static MZ_FORCEINLINE mz_bool mz_zip_array_reserve(mz_zip_archive *pZip,
mz_zip_array *pArray,
size_t new_capacity,
mz_uint growing) {
if (new_capacity > pArray->m_capacity) {
if (!mz_zip_array_ensure_capacity(pZip, pArray, new_capacity, growing))
return MZ_FALSE;
}
return MZ_TRUE;
}
static MZ_FORCEINLINE mz_bool mz_zip_array_resize(mz_zip_archive *pZip,
mz_zip_array *pArray,
size_t new_size,
mz_uint growing) {
if (new_size > pArray->m_capacity) {
if (!mz_zip_array_ensure_capacity(pZip, pArray, new_size, growing))
return MZ_FALSE;
}
pArray->m_size = new_size;
return MZ_TRUE;
}
static MZ_FORCEINLINE mz_bool mz_zip_array_ensure_room(mz_zip_archive *pZip,
mz_zip_array *pArray,
size_t n) {
return mz_zip_array_reserve(pZip, pArray, pArray->m_size + n, MZ_TRUE);
}
static MZ_FORCEINLINE mz_bool mz_zip_array_push_back(mz_zip_archive *pZip,
mz_zip_array *pArray,
const void *pElements,
size_t n) {
if (0 == n)
return MZ_TRUE;
if (!pElements)
return MZ_FALSE;
size_t orig_size = pArray->m_size;
if (!mz_zip_array_resize(pZip, pArray, orig_size + n, MZ_TRUE))
return MZ_FALSE;
memcpy((mz_uint8 *)pArray->m_p + orig_size * pArray->m_element_size,
pElements, n * pArray->m_element_size);
return MZ_TRUE;
}
#ifndef MINIZ_NO_TIME
static time_t mz_zip_dos_to_time_t(int dos_time, int dos_date) {
struct tm tm;
memset(&tm, 0, sizeof(tm));
tm.tm_isdst = -1;
tm.tm_year = ((dos_date >> 9) & 127) + 1980 - 1900;
tm.tm_mon = ((dos_date >> 5) & 15) - 1;
tm.tm_mday = dos_date & 31;
tm.tm_hour = (dos_time >> 11) & 31;
tm.tm_min = (dos_time >> 5) & 63;
tm.tm_sec = (dos_time << 1) & 62;
return mktime(&tm);
}
#ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
static void mz_zip_time_t_to_dos_time(time_t time, mz_uint16 *pDOS_time,
mz_uint16 *pDOS_date) {
#ifdef _MSC_VER
struct tm tm_struct;
struct tm *tm = &tm_struct;
errno_t err = localtime_s(tm, &time);
if (err) {
*pDOS_date = 0;
*pDOS_time = 0;
return;
}
#else
struct tm *tm = localtime(&time);
#endif /* #ifdef _MSC_VER */
*pDOS_time = (mz_uint16)(((tm->tm_hour) << 11) + ((tm->tm_min) << 5) +
((tm->tm_sec) >> 1));
*pDOS_date = (mz_uint16)(((tm->tm_year + 1900 - 1980) << 9) +
((tm->tm_mon + 1) << 5) + tm->tm_mday);
}
#endif /* MINIZ_NO_ARCHIVE_WRITING_APIS */
#ifndef MINIZ_NO_STDIO
#ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
static mz_bool mz_zip_get_file_modified_time(const char *pFilename,
time_t *pTime) {
struct MZ_FILE_STAT_STRUCT file_stat;
/* On Linux with x86 glibc, this call will fail on large files (I think >=
* 0x80000000 bytes) unless you compiled with _LARGEFILE64_SOURCE. Argh. */
if (MZ_FILE_STAT(pFilename, &file_stat) != 0)
return MZ_FALSE;
*pTime = file_stat.st_mtime;
return MZ_TRUE;
}
#endif /* #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS*/
static mz_bool mz_zip_set_file_times(const char *pFilename, time_t access_time,
time_t modified_time) {
struct utimbuf t;
memset(&t, 0, sizeof(t));
t.actime = access_time;
t.modtime = modified_time;
return !utime(pFilename, &t);
}
#endif /* #ifndef MINIZ_NO_STDIO */
#endif /* #ifndef MINIZ_NO_TIME */
static MZ_FORCEINLINE mz_bool mz_zip_set_error(mz_zip_archive *pZip,
mz_zip_error err_num) {
if (pZip)
pZip->m_last_error = err_num;
return MZ_FALSE;
}
static mz_bool mz_zip_reader_init_internal(mz_zip_archive *pZip,
mz_uint32 flags) {
(void)flags;
if ((!pZip) || (pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_INVALID))
return MZ_FALSE;
if (!pZip->m_pAlloc)
pZip->m_pAlloc = def_alloc_func;
if (!pZip->m_pFree)
pZip->m_pFree = def_free_func;
if (!pZip->m_pRealloc)
pZip->m_pRealloc = def_realloc_func;
pZip->m_zip_mode = MZ_ZIP_MODE_READING;
pZip->m_archive_size = 0;
pZip->m_central_directory_file_ofs = 0;
pZip->m_total_files = 0;
if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc(
pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state))))
return MZ_FALSE;
memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state));
MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir,
sizeof(mz_uint8));
MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets,
sizeof(mz_uint32));
MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets,
sizeof(mz_uint32));
return MZ_TRUE;
}
static MZ_FORCEINLINE mz_bool
mz_zip_reader_filename_less(const mz_zip_array *pCentral_dir_array,
const mz_zip_array *pCentral_dir_offsets,
mz_uint l_index, mz_uint r_index) {
const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT(
pCentral_dir_array, mz_uint8,
MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32,
l_index)),
*pE;
const mz_uint8 *pR = &MZ_ZIP_ARRAY_ELEMENT(
pCentral_dir_array, mz_uint8,
MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32, r_index));
mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS),
r_len = MZ_READ_LE16(pR + MZ_ZIP_CDH_FILENAME_LEN_OFS);
mz_uint8 l = 0, r = 0;
pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
pR += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
pE = pL + MZ_MIN(l_len, r_len);
while (pL < pE) {
if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR)))
break;
pL++;
pR++;
}
return (pL == pE) ? (l_len < r_len) : (l < r);
}
#define MZ_SWAP_UINT32(a, b) \
do { \
mz_uint32 t = a; \
a = b; \
b = t; \
} \
MZ_MACRO_END
// Heap sort of lowercased filenames, used to help accelerate plain central
// directory searches by mz_zip_reader_locate_file(). (Could also use qsort(),
// but it could allocate memory.)
static void
mz_zip_reader_sort_central_dir_offsets_by_filename(mz_zip_archive *pZip) {
mz_zip_internal_state *pState = pZip->m_pState;
const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets;
const mz_zip_array *pCentral_dir = &pState->m_central_dir;
mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT(
&pState->m_sorted_central_dir_offsets, mz_uint32, 0);
const int size = pZip->m_total_files;
int start = (size - 2) >> 1, end;
while (start >= 0) {
int child, root = start;
for (;;) {
if ((child = (root << 1) + 1) >= size)
break;
child +=
(((child + 1) < size) &&
(mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
pIndices[child], pIndices[child + 1])));
if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
pIndices[root], pIndices[child]))
break;
MZ_SWAP_UINT32(pIndices[root], pIndices[child]);
root = child;
}
start--;
}
end = size - 1;
while (end > 0) {
int child, root = 0;
MZ_SWAP_UINT32(pIndices[end], pIndices[0]);
for (;;) {
if ((child = (root << 1) + 1) >= end)
break;
child +=
(((child + 1) < end) &&
mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
pIndices[child], pIndices[child + 1]));
if (!mz_zip_reader_filename_less(pCentral_dir, pCentral_dir_offsets,
pIndices[root], pIndices[child]))
break;
MZ_SWAP_UINT32(pIndices[root], pIndices[child]);
root = child;
}
end--;
}
}
static mz_bool mz_zip_reader_locate_header_sig(mz_zip_archive *pZip,
mz_uint32 record_sig,
mz_uint32 record_size,
mz_int64 *pOfs) {
mz_int64 cur_file_ofs;
mz_uint32 buf_u32[4096 / sizeof(mz_uint32)];
mz_uint8 *pBuf = (mz_uint8 *)buf_u32;
/* Basic sanity checks - reject files which are too small */
if (pZip->m_archive_size < record_size)
return MZ_FALSE;
/* Find the record by scanning the file from the end towards the beginning. */
cur_file_ofs =
MZ_MAX((mz_int64)pZip->m_archive_size - (mz_int64)sizeof(buf_u32), 0);
for (;;) {
int i,
n = (int)MZ_MIN(sizeof(buf_u32), pZip->m_archive_size - cur_file_ofs);
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf, n) != (mz_uint)n)
return MZ_FALSE;
for (i = n - 4; i >= 0; --i) {
mz_uint s = MZ_READ_LE32(pBuf + i);
if (s == record_sig) {
if ((pZip->m_archive_size - (cur_file_ofs + i)) >= record_size)
break;
}
}
if (i >= 0) {
cur_file_ofs += i;
break;
}
/* Give up if we've searched the entire file, or we've gone back "too far"
* (~64kb) */
if ((!cur_file_ofs) || ((pZip->m_archive_size - cur_file_ofs) >=
(MZ_UINT16_MAX + record_size)))
return MZ_FALSE;
cur_file_ofs = MZ_MAX(cur_file_ofs - (sizeof(buf_u32) - 3), 0);
}
*pOfs = cur_file_ofs;
return MZ_TRUE;
}
static mz_bool mz_zip_reader_read_central_dir(mz_zip_archive *pZip,
mz_uint flags) {
mz_uint cdir_size = 0, cdir_entries_on_this_disk = 0, num_this_disk = 0,
cdir_disk_index = 0;
mz_uint64 cdir_ofs = 0;
mz_int64 cur_file_ofs = 0;
const mz_uint8 *p;
mz_uint32 buf_u32[4096 / sizeof(mz_uint32)];
mz_uint8 *pBuf = (mz_uint8 *)buf_u32;
mz_bool sort_central_dir =
((flags & MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY) == 0);
mz_uint32 zip64_end_of_central_dir_locator_u32
[(MZ_ZIP64_END_OF_CENTRAL_DIR_LOCATOR_SIZE + sizeof(mz_uint32) - 1) /
sizeof(mz_uint32)];
mz_uint8 *pZip64_locator = (mz_uint8 *)zip64_end_of_central_dir_locator_u32;
mz_uint32 zip64_end_of_central_dir_header_u32
[(MZ_ZIP64_END_OF_CENTRAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) /
sizeof(mz_uint32)];
mz_uint8 *pZip64_end_of_central_dir =
(mz_uint8 *)zip64_end_of_central_dir_header_u32;
mz_uint64 zip64_end_of_central_dir_ofs = 0;
/* Basic sanity checks - reject files which are too small, and check the first
* 4 bytes of the file to make sure a local header is there. */
if (pZip->m_archive_size < MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE)
return mz_zip_set_error(pZip, MZ_ZIP_NOT_AN_ARCHIVE);
if (!mz_zip_reader_locate_header_sig(
pZip, MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG,
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE, &cur_file_ofs))
return mz_zip_set_error(pZip, MZ_ZIP_FAILED_FINDING_CENTRAL_DIR);
/* Read and verify the end of central directory record. */
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf,
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) !=
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE)
return mz_zip_set_error(pZip, MZ_ZIP_FILE_READ_FAILED);
if (MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_SIG_OFS) !=
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG)
return mz_zip_set_error(pZip, MZ_ZIP_NOT_AN_ARCHIVE);
if (cur_file_ofs >= (MZ_ZIP64_END_OF_CENTRAL_DIR_LOCATOR_SIZE +
MZ_ZIP64_END_OF_CENTRAL_DIR_HEADER_SIZE)) {
if (pZip->m_pRead(pZip->m_pIO_opaque,
cur_file_ofs - MZ_ZIP64_END_OF_CENTRAL_DIR_LOCATOR_SIZE,
pZip64_locator,
MZ_ZIP64_END_OF_CENTRAL_DIR_LOCATOR_SIZE) ==
MZ_ZIP64_END_OF_CENTRAL_DIR_LOCATOR_SIZE) {
if (MZ_READ_LE32(pZip64_locator + MZ_ZIP64_ECDL_SIG_OFS) ==
MZ_ZIP64_END_OF_CENTRAL_DIR_LOCATOR_SIG) {
zip64_end_of_central_dir_ofs = MZ_READ_LE64(
pZip64_locator + MZ_ZIP64_ECDL_REL_OFS_TO_ZIP64_ECDR_OFS);
if (zip64_end_of_central_dir_ofs >
(pZip->m_archive_size - MZ_ZIP64_END_OF_CENTRAL_DIR_HEADER_SIZE))
return mz_zip_set_error(pZip, MZ_ZIP_NOT_AN_ARCHIVE);
if (pZip->m_pRead(pZip->m_pIO_opaque, zip64_end_of_central_dir_ofs,
pZip64_end_of_central_dir,
MZ_ZIP64_END_OF_CENTRAL_DIR_HEADER_SIZE) ==
MZ_ZIP64_END_OF_CENTRAL_DIR_HEADER_SIZE) {
if (MZ_READ_LE32(pZip64_end_of_central_dir + MZ_ZIP64_ECDH_SIG_OFS) ==
MZ_ZIP64_END_OF_CENTRAL_DIR_HEADER_SIG) {
pZip->m_pState->m_zip64 = MZ_TRUE;
}
}
}
}
}
pZip->m_total_files = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS);
cdir_entries_on_this_disk =
MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS);
num_this_disk = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_THIS_DISK_OFS);
cdir_disk_index = MZ_READ_LE16(pBuf + MZ_ZIP_ECDH_NUM_DISK_CDIR_OFS);
cdir_size = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_SIZE_OFS);
cdir_ofs = MZ_READ_LE32(pBuf + MZ_ZIP_ECDH_CDIR_OFS_OFS);
if (pZip->m_pState->m_zip64) {
mz_uint32 zip64_total_num_of_disks =
MZ_READ_LE32(pZip64_locator + MZ_ZIP64_ECDL_TOTAL_NUMBER_OF_DISKS_OFS);
mz_uint64 zip64_cdir_total_entries = MZ_READ_LE64(
pZip64_end_of_central_dir + MZ_ZIP64_ECDH_CDIR_TOTAL_ENTRIES_OFS);
mz_uint64 zip64_cdir_total_entries_on_this_disk = MZ_READ_LE64(
pZip64_end_of_central_dir + MZ_ZIP64_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS);
mz_uint64 zip64_size_of_end_of_central_dir_record = MZ_READ_LE64(
pZip64_end_of_central_dir + MZ_ZIP64_ECDH_SIZE_OF_RECORD_OFS);
mz_uint64 zip64_size_of_central_directory =
MZ_READ_LE64(pZip64_end_of_central_dir + MZ_ZIP64_ECDH_CDIR_SIZE_OFS);
if (zip64_size_of_end_of_central_dir_record <
(MZ_ZIP64_END_OF_CENTRAL_DIR_HEADER_SIZE - 12))
return mz_zip_set_error(pZip, MZ_ZIP_INVALID_HEADER_OR_CORRUPTED);
if (zip64_total_num_of_disks != 1U)
return mz_zip_set_error(pZip, MZ_ZIP_UNSUPPORTED_MULTIDISK);
/* Check for miniz's practical limits */
if (zip64_cdir_total_entries > MZ_UINT32_MAX)
return mz_zip_set_error(pZip, MZ_ZIP_TOO_MANY_FILES);
pZip->m_total_files = (mz_uint32)zip64_cdir_total_entries;
if (zip64_cdir_total_entries_on_this_disk > MZ_UINT32_MAX)
return mz_zip_set_error(pZip, MZ_ZIP_TOO_MANY_FILES);
cdir_entries_on_this_disk =
(mz_uint32)zip64_cdir_total_entries_on_this_disk;
/* Check for miniz's current practical limits (sorry, this should be enough
* for millions of files) */
if (zip64_size_of_central_directory > MZ_UINT32_MAX)
return mz_zip_set_error(pZip, MZ_ZIP_UNSUPPORTED_CDIR_SIZE);
cdir_size = (mz_uint32)zip64_size_of_central_directory;
num_this_disk = MZ_READ_LE32(pZip64_end_of_central_dir +
MZ_ZIP64_ECDH_NUM_THIS_DISK_OFS);
cdir_disk_index = MZ_READ_LE32(pZip64_end_of_central_dir +
MZ_ZIP64_ECDH_NUM_DISK_CDIR_OFS);
cdir_ofs =
MZ_READ_LE64(pZip64_end_of_central_dir + MZ_ZIP64_ECDH_CDIR_OFS_OFS);
}
if (pZip->m_total_files != cdir_entries_on_this_disk)
return mz_zip_set_error(pZip, MZ_ZIP_UNSUPPORTED_MULTIDISK);
if (((num_this_disk | cdir_disk_index) != 0) &&
((num_this_disk != 1) || (cdir_disk_index != 1)))
return mz_zip_set_error(pZip, MZ_ZIP_UNSUPPORTED_MULTIDISK);
if (cdir_size < pZip->m_total_files * MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)
return mz_zip_set_error(pZip, MZ_ZIP_INVALID_HEADER_OR_CORRUPTED);
if ((cdir_ofs + (mz_uint64)cdir_size) > pZip->m_archive_size)
return mz_zip_set_error(pZip, MZ_ZIP_INVALID_HEADER_OR_CORRUPTED);
pZip->m_central_directory_file_ofs = cdir_ofs;
if (pZip->m_total_files) {
mz_uint i, n;
/* Read the entire central directory into a heap block, and allocate another
* heap block to hold the unsorted central dir file record offsets, and
* possibly another to hold the sorted indices. */
if ((!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir, cdir_size,
MZ_FALSE)) ||
(!mz_zip_array_resize(pZip, &pZip->m_pState->m_central_dir_offsets,
pZip->m_total_files, MZ_FALSE)))
return mz_zip_set_error(pZip, MZ_ZIP_ALLOC_FAILED);
if (sort_central_dir) {
if (!mz_zip_array_resize(pZip,
&pZip->m_pState->m_sorted_central_dir_offsets,
pZip->m_total_files, MZ_FALSE))
return mz_zip_set_error(pZip, MZ_ZIP_ALLOC_FAILED);
}
if (pZip->m_pRead(pZip->m_pIO_opaque, cdir_ofs,
pZip->m_pState->m_central_dir.m_p,
cdir_size) != cdir_size)
return mz_zip_set_error(pZip, MZ_ZIP_FILE_READ_FAILED);
/* Now create an index into the central directory file records, do some
* basic sanity checking on each record */
p = (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p;
for (n = cdir_size, i = 0; i < pZip->m_total_files; ++i) {
mz_uint total_header_size, disk_index, bit_flags, filename_size,
ext_data_size;
mz_uint64 comp_size, decomp_size, local_header_ofs;
if ((n < MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) ||
(MZ_READ_LE32(p) != MZ_ZIP_CENTRAL_DIR_HEADER_SIG))
return mz_zip_set_error(pZip, MZ_ZIP_INVALID_HEADER_OR_CORRUPTED);
MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32,
i) =
(mz_uint32)(p - (const mz_uint8 *)pZip->m_pState->m_central_dir.m_p);
if (sort_central_dir)
MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_sorted_central_dir_offsets,
mz_uint32, i) = i;
comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
decomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);
local_header_ofs = MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS);
filename_size = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
ext_data_size = MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS);
if ((!pZip->m_pState->m_zip64_has_extended_info_fields) &&
(ext_data_size) &&
(MZ_MAX(MZ_MAX(comp_size, decomp_size), local_header_ofs) ==
MZ_UINT32_MAX)) {
/* Attempt to find zip64 extended information field in the entry's extra
* data */
mz_uint32 extra_size_remaining = ext_data_size;
if (extra_size_remaining) {
const mz_uint8 *pExtra_data;
void *buf = NULL;
if (MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_size + ext_data_size >
n) {
buf = MZ_MALLOC(ext_data_size);
if (buf == NULL)
return mz_zip_set_error(pZip, MZ_ZIP_ALLOC_FAILED);
if (pZip->m_pRead(pZip->m_pIO_opaque,
cdir_ofs + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
filename_size,
buf, ext_data_size) != ext_data_size) {
MZ_FREE(buf);
return mz_zip_set_error(pZip, MZ_ZIP_FILE_READ_FAILED);
}
pExtra_data = (mz_uint8 *)buf;
} else {
pExtra_data = p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_size;
}
do {
mz_uint32 field_id;
mz_uint32 field_data_size;
if (extra_size_remaining < (sizeof(mz_uint16) * 2)) {
MZ_FREE(buf);
return mz_zip_set_error(pZip, MZ_ZIP_INVALID_HEADER_OR_CORRUPTED);
}
field_id = MZ_READ_LE16(pExtra_data);
field_data_size = MZ_READ_LE16(pExtra_data + sizeof(mz_uint16));
if ((field_data_size + sizeof(mz_uint16) * 2) >
extra_size_remaining) {
MZ_FREE(buf);
return mz_zip_set_error(pZip, MZ_ZIP_INVALID_HEADER_OR_CORRUPTED);
}
if (field_id == MZ_ZIP64_EXTENDED_INFORMATION_FIELD_HEADER_ID) {
/* Ok, the archive didn't have any zip64 headers but it uses a
* zip64 extended information field so mark it as zip64 anyway
* (this can occur with infozip's zip util when it reads
* compresses files from stdin). */
pZip->m_pState->m_zip64 = MZ_TRUE;
pZip->m_pState->m_zip64_has_extended_info_fields = MZ_TRUE;
break;
}
pExtra_data += sizeof(mz_uint16) * 2 + field_data_size;
extra_size_remaining =
extra_size_remaining - sizeof(mz_uint16) * 2 - field_data_size;
} while (extra_size_remaining);
MZ_FREE(buf);
}
}
/* I've seen archives that aren't marked as zip64 that uses zip64 ext
* data, argh */
if ((comp_size != MZ_UINT32_MAX) && (decomp_size != MZ_UINT32_MAX)) {
if (((!MZ_READ_LE32(p + MZ_ZIP_CDH_METHOD_OFS)) &&
(decomp_size != comp_size)) ||
(decomp_size && !comp_size))
return mz_zip_set_error(pZip, MZ_ZIP_INVALID_HEADER_OR_CORRUPTED);
}
disk_index = MZ_READ_LE16(p + MZ_ZIP_CDH_DISK_START_OFS);
if ((disk_index == MZ_UINT16_MAX) ||
((disk_index != num_this_disk) && (disk_index != 1)))
return mz_zip_set_error(pZip, MZ_ZIP_UNSUPPORTED_MULTIDISK);
if (comp_size != MZ_UINT32_MAX) {
if (((mz_uint64)MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS) +
MZ_ZIP_LOCAL_DIR_HEADER_SIZE + comp_size) > pZip->m_archive_size)
return mz_zip_set_error(pZip, MZ_ZIP_INVALID_HEADER_OR_CORRUPTED);
}
bit_flags = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS);
if (bit_flags & MZ_ZIP_GENERAL_PURPOSE_BIT_FLAG_LOCAL_DIR_IS_MASKED)
return mz_zip_set_error(pZip, MZ_ZIP_UNSUPPORTED_ENCRYPTION);
if ((total_header_size = MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) +
MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS) +
MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS)) >
n)
return mz_zip_set_error(pZip, MZ_ZIP_INVALID_HEADER_OR_CORRUPTED);
n -= total_header_size;
p += total_header_size;
}
}
if (sort_central_dir)
mz_zip_reader_sort_central_dir_offsets_by_filename(pZip);
return MZ_TRUE;
}
mz_bool mz_zip_reader_init(mz_zip_archive *pZip, mz_uint64 size,
mz_uint32 flags) {
if ((!pZip) || (!pZip->m_pRead))
return MZ_FALSE;
if (!mz_zip_reader_init_internal(pZip, flags))
return MZ_FALSE;
pZip->m_archive_size = size;
if (!mz_zip_reader_read_central_dir(pZip, flags)) {
mz_zip_reader_end(pZip);
return MZ_FALSE;
}
return MZ_TRUE;
}
static size_t mz_zip_mem_read_func(void *pOpaque, mz_uint64 file_ofs,
void *pBuf, size_t n) {
mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
size_t s = (file_ofs >= pZip->m_archive_size)
? 0
: (size_t)MZ_MIN(pZip->m_archive_size - file_ofs, n);
memcpy(pBuf, (const mz_uint8 *)pZip->m_pState->m_pMem + file_ofs, s);
return s;
}
mz_bool mz_zip_reader_init_mem(mz_zip_archive *pZip, const void *pMem,
size_t size, mz_uint32 flags) {
if (!mz_zip_reader_init_internal(pZip, flags))
return MZ_FALSE;
pZip->m_archive_size = size;
pZip->m_pRead = mz_zip_mem_read_func;
pZip->m_pIO_opaque = pZip;
#ifdef __cplusplus
pZip->m_pState->m_pMem = const_cast<void *>(pMem);
#else
pZip->m_pState->m_pMem = (void *)pMem;
#endif
pZip->m_pState->m_mem_size = size;
if (!mz_zip_reader_read_central_dir(pZip, flags)) {
mz_zip_reader_end(pZip);
return MZ_FALSE;
}
return MZ_TRUE;
}
#ifndef MINIZ_NO_STDIO
static size_t mz_zip_file_read_func(void *pOpaque, mz_uint64 file_ofs,
void *pBuf, size_t n) {
mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile);
if (((mz_int64)file_ofs < 0) ||
(((cur_ofs != (mz_int64)file_ofs)) &&
(MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET))))
return 0;
return MZ_FREAD(pBuf, 1, n, pZip->m_pState->m_pFile);
}
mz_bool mz_zip_reader_init_file(mz_zip_archive *pZip, const char *pFilename,
mz_uint32 flags) {
mz_uint64 file_size;
MZ_FILE *pFile = MZ_FOPEN(pFilename, "rb");
if (!pFile)
return MZ_FALSE;
if (MZ_FSEEK64(pFile, 0, SEEK_END)) {
MZ_FCLOSE(pFile);
return MZ_FALSE;
}
file_size = MZ_FTELL64(pFile);
if (!mz_zip_reader_init_internal(pZip, flags)) {
MZ_FCLOSE(pFile);
return MZ_FALSE;
}
pZip->m_pRead = mz_zip_file_read_func;
pZip->m_pIO_opaque = pZip;
pZip->m_pState->m_pFile = pFile;
pZip->m_archive_size = file_size;
if (!mz_zip_reader_read_central_dir(pZip, flags)) {
mz_zip_reader_end(pZip);
return MZ_FALSE;
}
return MZ_TRUE;
}
#endif // #ifndef MINIZ_NO_STDIO
mz_uint mz_zip_reader_get_num_files(mz_zip_archive *pZip) {
return pZip ? pZip->m_total_files : 0;
}
static MZ_FORCEINLINE const mz_uint8 *
mz_zip_reader_get_cdh(mz_zip_archive *pZip, mz_uint file_index) {
if ((!pZip) || (!pZip->m_pState) || (file_index >= pZip->m_total_files) ||
(pZip->m_zip_mode != MZ_ZIP_MODE_READING))
return NULL;
return &MZ_ZIP_ARRAY_ELEMENT(
&pZip->m_pState->m_central_dir, mz_uint8,
MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32,
file_index));
}
mz_bool mz_zip_reader_is_file_encrypted(mz_zip_archive *pZip,
mz_uint file_index) {
mz_uint m_bit_flag;
const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
if (!p)
return MZ_FALSE;
m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS);
return (m_bit_flag & 1);
}
mz_bool mz_zip_reader_is_file_a_directory(mz_zip_archive *pZip,
mz_uint file_index) {
mz_uint filename_len, external_attr;
const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
if (!p)
return MZ_FALSE;
// First see if the filename ends with a '/' character.
filename_len = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
if (filename_len) {
if (*(p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_len - 1) == '/')
return MZ_TRUE;
}
// Bugfix: This code was also checking if the internal attribute was non-zero,
// which wasn't correct. Most/all zip writers (hopefully) set DOS
// file/directory attributes in the low 16-bits, so check for the DOS
// directory flag and ignore the source OS ID in the created by field.
// FIXME: Remove this check? Is it necessary - we already check the filename.
external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS);
if ((external_attr & 0x10) != 0)
return MZ_TRUE;
return MZ_FALSE;
}
mz_bool mz_zip_reader_file_stat(mz_zip_archive *pZip, mz_uint file_index,
mz_zip_archive_file_stat *pStat) {
mz_uint n;
const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
if ((!p) || (!pStat))
return MZ_FALSE;
// Unpack the central directory record.
pStat->m_file_index = file_index;
pStat->m_central_dir_ofs = MZ_ZIP_ARRAY_ELEMENT(
&pZip->m_pState->m_central_dir_offsets, mz_uint32, file_index);
pStat->m_version_made_by = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_MADE_BY_OFS);
pStat->m_version_needed = MZ_READ_LE16(p + MZ_ZIP_CDH_VERSION_NEEDED_OFS);
pStat->m_bit_flag = MZ_READ_LE16(p + MZ_ZIP_CDH_BIT_FLAG_OFS);
pStat->m_method = MZ_READ_LE16(p + MZ_ZIP_CDH_METHOD_OFS);
#ifndef MINIZ_NO_TIME
pStat->m_time =
mz_zip_dos_to_time_t(MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_TIME_OFS),
MZ_READ_LE16(p + MZ_ZIP_CDH_FILE_DATE_OFS));
#endif
pStat->m_crc32 = MZ_READ_LE32(p + MZ_ZIP_CDH_CRC32_OFS);
pStat->m_comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
pStat->m_uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);
pStat->m_internal_attr = MZ_READ_LE16(p + MZ_ZIP_CDH_INTERNAL_ATTR_OFS);
pStat->m_external_attr = MZ_READ_LE32(p + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS);
pStat->m_local_header_ofs = MZ_READ_LE32(p + MZ_ZIP_CDH_LOCAL_HEADER_OFS);
// Copy as much of the filename and comment as possible.
n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILENAME_SIZE - 1);
memcpy(pStat->m_filename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n);
pStat->m_filename[n] = '\0';
n = MZ_READ_LE16(p + MZ_ZIP_CDH_COMMENT_LEN_OFS);
n = MZ_MIN(n, MZ_ZIP_MAX_ARCHIVE_FILE_COMMENT_SIZE - 1);
pStat->m_comment_size = n;
memcpy(pStat->m_comment,
p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS) +
MZ_READ_LE16(p + MZ_ZIP_CDH_EXTRA_LEN_OFS),
n);
pStat->m_comment[n] = '\0';
return MZ_TRUE;
}
mz_uint mz_zip_reader_get_filename(mz_zip_archive *pZip, mz_uint file_index,
char *pFilename, mz_uint filename_buf_size) {
mz_uint n;
const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
if (!p) {
if (filename_buf_size)
pFilename[0] = '\0';
return 0;
}
n = MZ_READ_LE16(p + MZ_ZIP_CDH_FILENAME_LEN_OFS);
if (filename_buf_size) {
n = MZ_MIN(n, filename_buf_size - 1);
memcpy(pFilename, p + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n);
pFilename[n] = '\0';
}
return n + 1;
}
static MZ_FORCEINLINE mz_bool mz_zip_reader_string_equal(const char *pA,
const char *pB,
mz_uint len,
mz_uint flags) {
mz_uint i;
if (flags & MZ_ZIP_FLAG_CASE_SENSITIVE)
return 0 == memcmp(pA, pB, len);
for (i = 0; i < len; ++i)
if (MZ_TOLOWER(pA[i]) != MZ_TOLOWER(pB[i]))
return MZ_FALSE;
return MZ_TRUE;
}
static MZ_FORCEINLINE int
mz_zip_reader_filename_compare(const mz_zip_array *pCentral_dir_array,
const mz_zip_array *pCentral_dir_offsets,
mz_uint l_index, const char *pR, mz_uint r_len) {
const mz_uint8 *pL = &MZ_ZIP_ARRAY_ELEMENT(
pCentral_dir_array, mz_uint8,
MZ_ZIP_ARRAY_ELEMENT(pCentral_dir_offsets, mz_uint32,
l_index)),
*pE;
mz_uint l_len = MZ_READ_LE16(pL + MZ_ZIP_CDH_FILENAME_LEN_OFS);
mz_uint8 l = 0, r = 0;
pL += MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
pE = pL + MZ_MIN(l_len, r_len);
while (pL < pE) {
if ((l = MZ_TOLOWER(*pL)) != (r = MZ_TOLOWER(*pR)))
break;
pL++;
pR++;
}
return (pL == pE) ? (int)(l_len - r_len) : (l - r);
}
static int mz_zip_reader_locate_file_binary_search(mz_zip_archive *pZip,
const char *pFilename) {
mz_zip_internal_state *pState = pZip->m_pState;
const mz_zip_array *pCentral_dir_offsets = &pState->m_central_dir_offsets;
const mz_zip_array *pCentral_dir = &pState->m_central_dir;
mz_uint32 *pIndices = &MZ_ZIP_ARRAY_ELEMENT(
&pState->m_sorted_central_dir_offsets, mz_uint32, 0);
const int size = pZip->m_total_files;
const mz_uint filename_len = (mz_uint)strlen(pFilename);
int l = 0, h = size - 1;
while (l <= h) {
int m = (l + h) >> 1, file_index = pIndices[m],
comp =
mz_zip_reader_filename_compare(pCentral_dir, pCentral_dir_offsets,
file_index, pFilename, filename_len);
if (!comp)
return file_index;
else if (comp < 0)
l = m + 1;
else
h = m - 1;
}
return -1;
}
int mz_zip_reader_locate_file(mz_zip_archive *pZip, const char *pName,
const char *pComment, mz_uint flags) {
mz_uint file_index;
size_t name_len, comment_len;
if ((!pZip) || (!pZip->m_pState) || (!pName) ||
(pZip->m_zip_mode != MZ_ZIP_MODE_READING))
return -1;
if (((flags & (MZ_ZIP_FLAG_IGNORE_PATH | MZ_ZIP_FLAG_CASE_SENSITIVE)) == 0) &&
(!pComment) && (pZip->m_pState->m_sorted_central_dir_offsets.m_size))
return mz_zip_reader_locate_file_binary_search(pZip, pName);
name_len = strlen(pName);
if (name_len > 0xFFFF)
return -1;
comment_len = pComment ? strlen(pComment) : 0;
if (comment_len > 0xFFFF)
return -1;
for (file_index = 0; file_index < pZip->m_total_files; file_index++) {
const mz_uint8 *pHeader = &MZ_ZIP_ARRAY_ELEMENT(
&pZip->m_pState->m_central_dir, mz_uint8,
MZ_ZIP_ARRAY_ELEMENT(&pZip->m_pState->m_central_dir_offsets, mz_uint32,
file_index));
mz_uint filename_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_FILENAME_LEN_OFS);
const char *pFilename =
(const char *)pHeader + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE;
if (filename_len < name_len)
continue;
if (comment_len) {
mz_uint file_extra_len = MZ_READ_LE16(pHeader + MZ_ZIP_CDH_EXTRA_LEN_OFS),
file_comment_len =
MZ_READ_LE16(pHeader + MZ_ZIP_CDH_COMMENT_LEN_OFS);
const char *pFile_comment = pFilename + filename_len + file_extra_len;
if ((file_comment_len != comment_len) ||
(!mz_zip_reader_string_equal(pComment, pFile_comment,
file_comment_len, flags)))
continue;
}
if ((flags & MZ_ZIP_FLAG_IGNORE_PATH) && (filename_len)) {
int ofs = filename_len - 1;
do {
if ((pFilename[ofs] == '/') || (pFilename[ofs] == '\\') ||
(pFilename[ofs] == ':'))
break;
} while (--ofs >= 0);
ofs++;
pFilename += ofs;
filename_len -= ofs;
}
if ((filename_len == name_len) &&
(mz_zip_reader_string_equal(pName, pFilename, filename_len, flags)))
return file_index;
}
return -1;
}
mz_bool mz_zip_reader_extract_to_mem_no_alloc(mz_zip_archive *pZip,
mz_uint file_index, void *pBuf,
size_t buf_size, mz_uint flags,
void *pUser_read_buf,
size_t user_read_buf_size) {
int status = TINFL_STATUS_DONE;
mz_uint64 needed_size, cur_file_ofs, comp_remaining,
out_buf_ofs = 0, read_buf_size, read_buf_ofs = 0, read_buf_avail;
mz_zip_archive_file_stat file_stat;
void *pRead_buf;
mz_uint32
local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) /
sizeof(mz_uint32)];
mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;
tinfl_decompressor inflator;
if ((buf_size) && (!pBuf))
return MZ_FALSE;
if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat))
return MZ_FALSE;
// Empty file, or a directory (but not always a directory - I've seen odd zips
// with directories that have compressed data which inflates to 0 bytes)
if (!file_stat.m_comp_size)
return MZ_TRUE;
// Entry is a subdirectory (I've seen old zips with dir entries which have
// compressed deflate data which inflates to 0 bytes, but these entries claim
// to uncompress to 512 bytes in the headers). I'm torn how to handle this
// case - should it fail instead?
if (mz_zip_reader_is_file_a_directory(pZip, file_index))
return MZ_TRUE;
// Encryption and patch files are not supported.
if (file_stat.m_bit_flag & (1 | 32))
return MZ_FALSE;
// This function only supports stored and deflate.
if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) &&
(file_stat.m_method != MZ_DEFLATED))
return MZ_FALSE;
// Ensure supplied output buffer is large enough.
needed_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? file_stat.m_comp_size
: file_stat.m_uncomp_size;
if (buf_size < needed_size)
return MZ_FALSE;
// Read and parse the local directory entry.
cur_file_ofs = file_stat.m_local_header_ofs;
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header,
MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
return MZ_FALSE;
if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
return MZ_FALSE;
cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE +
MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) +
MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size)
return MZ_FALSE;
if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method)) {
// The file is stored or the caller has requested the compressed data.
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pBuf,
(size_t)needed_size) != needed_size)
return MZ_FALSE;
return ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) != 0) ||
(mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf,
(size_t)file_stat.m_uncomp_size) == file_stat.m_crc32);
}
// Decompress the file either directly from memory or from a file input
// buffer.
tinfl_init(&inflator);
if (pZip->m_pState->m_pMem) {
// Read directly from the archive in memory.
pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs;
read_buf_size = read_buf_avail = file_stat.m_comp_size;
comp_remaining = 0;
} else if (pUser_read_buf) {
// Use a user provided read buffer.
if (!user_read_buf_size)
return MZ_FALSE;
pRead_buf = (mz_uint8 *)pUser_read_buf;
read_buf_size = user_read_buf_size;
read_buf_avail = 0;
comp_remaining = file_stat.m_comp_size;
} else {
// Temporarily allocate a read buffer.
read_buf_size = MZ_MIN(file_stat.m_comp_size, MZ_ZIP_MAX_IO_BUF_SIZE);
if (((sizeof(size_t) == sizeof(mz_uint32))) && (read_buf_size > 0x7FFFFFFF))
return MZ_FALSE;
if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1,
(size_t)read_buf_size)))
return MZ_FALSE;
read_buf_avail = 0;
comp_remaining = file_stat.m_comp_size;
}
do {
size_t in_buf_size,
out_buf_size = (size_t)(file_stat.m_uncomp_size - out_buf_ofs);
if ((!read_buf_avail) && (!pZip->m_pState->m_pMem)) {
read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf,
(size_t)read_buf_avail) != read_buf_avail) {
status = TINFL_STATUS_FAILED;
break;
}
cur_file_ofs += read_buf_avail;
comp_remaining -= read_buf_avail;
read_buf_ofs = 0;
}
in_buf_size = (size_t)read_buf_avail;
status = tinfl_decompress(
&inflator, (mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size,
(mz_uint8 *)pBuf, (mz_uint8 *)pBuf + out_buf_ofs, &out_buf_size,
TINFL_FLAG_USING_NON_WRAPPING_OUTPUT_BUF |
(comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0));
read_buf_avail -= in_buf_size;
read_buf_ofs += in_buf_size;
out_buf_ofs += out_buf_size;
} while (status == TINFL_STATUS_NEEDS_MORE_INPUT);
if (status == TINFL_STATUS_DONE) {
// Make sure the entire file was decompressed, and check its CRC.
if ((out_buf_ofs != file_stat.m_uncomp_size) ||
(mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf,
(size_t)file_stat.m_uncomp_size) != file_stat.m_crc32))
status = TINFL_STATUS_FAILED;
}
if ((!pZip->m_pState->m_pMem) && (!pUser_read_buf))
pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
return status == TINFL_STATUS_DONE;
}
mz_bool mz_zip_reader_extract_file_to_mem_no_alloc(
mz_zip_archive *pZip, const char *pFilename, void *pBuf, size_t buf_size,
mz_uint flags, void *pUser_read_buf, size_t user_read_buf_size) {
int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
if (file_index < 0)
return MZ_FALSE;
return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size,
flags, pUser_read_buf,
user_read_buf_size);
}
mz_bool mz_zip_reader_extract_to_mem(mz_zip_archive *pZip, mz_uint file_index,
void *pBuf, size_t buf_size,
mz_uint flags) {
return mz_zip_reader_extract_to_mem_no_alloc(pZip, file_index, pBuf, buf_size,
flags, NULL, 0);
}
mz_bool mz_zip_reader_extract_file_to_mem(mz_zip_archive *pZip,
const char *pFilename, void *pBuf,
size_t buf_size, mz_uint flags) {
return mz_zip_reader_extract_file_to_mem_no_alloc(pZip, pFilename, pBuf,
buf_size, flags, NULL, 0);
}
void *mz_zip_reader_extract_to_heap(mz_zip_archive *pZip, mz_uint file_index,
size_t *pSize, mz_uint flags) {
mz_uint64 comp_size, uncomp_size, alloc_size;
const mz_uint8 *p = mz_zip_reader_get_cdh(pZip, file_index);
void *pBuf;
if (pSize)
*pSize = 0;
if (!p)
return NULL;
comp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
uncomp_size = MZ_READ_LE32(p + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS);
alloc_size = (flags & MZ_ZIP_FLAG_COMPRESSED_DATA) ? comp_size : uncomp_size;
if (((sizeof(size_t) == sizeof(mz_uint32))) && (alloc_size > 0x7FFFFFFF))
return NULL;
if (NULL ==
(pBuf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, (size_t)alloc_size)))
return NULL;
if (!mz_zip_reader_extract_to_mem(pZip, file_index, pBuf, (size_t)alloc_size,
flags)) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
return NULL;
}
if (pSize)
*pSize = (size_t)alloc_size;
return pBuf;
}
void *mz_zip_reader_extract_file_to_heap(mz_zip_archive *pZip,
const char *pFilename, size_t *pSize,
mz_uint flags) {
int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
if (file_index < 0) {
if (pSize)
*pSize = 0;
return MZ_FALSE;
}
return mz_zip_reader_extract_to_heap(pZip, file_index, pSize, flags);
}
mz_bool mz_zip_reader_extract_to_callback(mz_zip_archive *pZip,
mz_uint file_index,
mz_file_write_func pCallback,
void *pOpaque, mz_uint flags) {
int status = TINFL_STATUS_DONE;
mz_uint file_crc32 = MZ_CRC32_INIT;
mz_uint64 read_buf_size, read_buf_ofs = 0, read_buf_avail, comp_remaining,
out_buf_ofs = 0, cur_file_ofs;
mz_zip_archive_file_stat file_stat;
void *pRead_buf = NULL;
void *pWrite_buf = NULL;
mz_uint32
local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) /
sizeof(mz_uint32)];
mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;
if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat))
return MZ_FALSE;
// Empty file, or a directory (but not always a directory - I've seen odd zips
// with directories that have compressed data which inflates to 0 bytes)
if (!file_stat.m_comp_size)
return MZ_TRUE;
// Entry is a subdirectory (I've seen old zips with dir entries which have
// compressed deflate data which inflates to 0 bytes, but these entries claim
// to uncompress to 512 bytes in the headers). I'm torn how to handle this
// case - should it fail instead?
if (mz_zip_reader_is_file_a_directory(pZip, file_index))
return MZ_TRUE;
// Encryption and patch files are not supported.
if (file_stat.m_bit_flag & (1 | 32))
return MZ_FALSE;
// This function only supports stored and deflate.
if ((!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (file_stat.m_method != 0) &&
(file_stat.m_method != MZ_DEFLATED))
return MZ_FALSE;
// Read and parse the local directory entry.
cur_file_ofs = file_stat.m_local_header_ofs;
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pLocal_header,
MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
return MZ_FALSE;
if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
return MZ_FALSE;
cur_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE +
MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) +
MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
if ((cur_file_ofs + file_stat.m_comp_size) > pZip->m_archive_size)
return MZ_FALSE;
// Decompress the file either directly from memory or from a file input
// buffer.
if (pZip->m_pState->m_pMem) {
pRead_buf = (mz_uint8 *)pZip->m_pState->m_pMem + cur_file_ofs;
read_buf_size = read_buf_avail = file_stat.m_comp_size;
comp_remaining = 0;
} else {
read_buf_size = MZ_MIN(file_stat.m_comp_size, MZ_ZIP_MAX_IO_BUF_SIZE);
if (NULL == (pRead_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1,
(size_t)read_buf_size)))
return MZ_FALSE;
read_buf_avail = 0;
comp_remaining = file_stat.m_comp_size;
}
if ((flags & MZ_ZIP_FLAG_COMPRESSED_DATA) || (!file_stat.m_method)) {
// The file is stored or the caller has requested the compressed data.
if (pZip->m_pState->m_pMem) {
if (((sizeof(size_t) == sizeof(mz_uint32))) &&
(file_stat.m_comp_size > 0xFFFFFFFF))
return MZ_FALSE;
if (pCallback(pOpaque, out_buf_ofs, pRead_buf,
(size_t)file_stat.m_comp_size) != file_stat.m_comp_size)
status = TINFL_STATUS_FAILED;
else if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))
file_crc32 =
(mz_uint32)mz_crc32(file_crc32, (const mz_uint8 *)pRead_buf,
(size_t)file_stat.m_comp_size);
// cur_file_ofs += file_stat.m_comp_size;
out_buf_ofs += file_stat.m_comp_size;
// comp_remaining = 0;
} else {
while (comp_remaining) {
read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf,
(size_t)read_buf_avail) != read_buf_avail) {
status = TINFL_STATUS_FAILED;
break;
}
if (!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))
file_crc32 = (mz_uint32)mz_crc32(
file_crc32, (const mz_uint8 *)pRead_buf, (size_t)read_buf_avail);
if (pCallback(pOpaque, out_buf_ofs, pRead_buf,
(size_t)read_buf_avail) != read_buf_avail) {
status = TINFL_STATUS_FAILED;
break;
}
cur_file_ofs += read_buf_avail;
out_buf_ofs += read_buf_avail;
comp_remaining -= read_buf_avail;
}
}
} else {
tinfl_decompressor inflator;
tinfl_init(&inflator);
if (NULL == (pWrite_buf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1,
TINFL_LZ_DICT_SIZE)))
status = TINFL_STATUS_FAILED;
else {
do {
mz_uint8 *pWrite_buf_cur =
(mz_uint8 *)pWrite_buf + (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1));
size_t in_buf_size,
out_buf_size =
TINFL_LZ_DICT_SIZE - (out_buf_ofs & (TINFL_LZ_DICT_SIZE - 1));
if ((!read_buf_avail) && (!pZip->m_pState->m_pMem)) {
read_buf_avail = MZ_MIN(read_buf_size, comp_remaining);
if (pZip->m_pRead(pZip->m_pIO_opaque, cur_file_ofs, pRead_buf,
(size_t)read_buf_avail) != read_buf_avail) {
status = TINFL_STATUS_FAILED;
break;
}
cur_file_ofs += read_buf_avail;
comp_remaining -= read_buf_avail;
read_buf_ofs = 0;
}
in_buf_size = (size_t)read_buf_avail;
status = tinfl_decompress(
&inflator, (const mz_uint8 *)pRead_buf + read_buf_ofs, &in_buf_size,
(mz_uint8 *)pWrite_buf, pWrite_buf_cur, &out_buf_size,
comp_remaining ? TINFL_FLAG_HAS_MORE_INPUT : 0);
read_buf_avail -= in_buf_size;
read_buf_ofs += in_buf_size;
if (out_buf_size) {
if (pCallback(pOpaque, out_buf_ofs, pWrite_buf_cur, out_buf_size) !=
out_buf_size) {
status = TINFL_STATUS_FAILED;
break;
}
file_crc32 =
(mz_uint32)mz_crc32(file_crc32, pWrite_buf_cur, out_buf_size);
if ((out_buf_ofs += out_buf_size) > file_stat.m_uncomp_size) {
status = TINFL_STATUS_FAILED;
break;
}
}
} while ((status == TINFL_STATUS_NEEDS_MORE_INPUT) ||
(status == TINFL_STATUS_HAS_MORE_OUTPUT));
}
}
if ((status == TINFL_STATUS_DONE) &&
(!(flags & MZ_ZIP_FLAG_COMPRESSED_DATA))) {
// Make sure the entire file was decompressed, and check its CRC.
if ((out_buf_ofs != file_stat.m_uncomp_size) ||
(file_crc32 != file_stat.m_crc32))
status = TINFL_STATUS_FAILED;
}
if (!pZip->m_pState->m_pMem)
pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
if (pWrite_buf)
pZip->m_pFree(pZip->m_pAlloc_opaque, pWrite_buf);
return status == TINFL_STATUS_DONE;
}
mz_bool mz_zip_reader_extract_file_to_callback(mz_zip_archive *pZip,
const char *pFilename,
mz_file_write_func pCallback,
void *pOpaque, mz_uint flags) {
int file_index = mz_zip_reader_locate_file(pZip, pFilename, NULL, flags);
if (file_index < 0)
return MZ_FALSE;
return mz_zip_reader_extract_to_callback(pZip, file_index, pCallback, pOpaque,
flags);
}
#ifndef MINIZ_NO_STDIO
static size_t mz_zip_file_write_callback(void *pOpaque, mz_uint64 ofs,
const void *pBuf, size_t n) {
(void)ofs;
return MZ_FWRITE(pBuf, 1, n, (MZ_FILE *)pOpaque);
}
mz_bool mz_zip_reader_extract_to_file(mz_zip_archive *pZip, mz_uint file_index,
const char *pDst_filename,
mz_uint flags) {
mz_bool status;
mz_zip_archive_file_stat file_stat;
MZ_FILE *pFile;
if (!mz_zip_reader_file_stat(pZip, file_index, &file_stat))
return MZ_FALSE;
pFile = MZ_FOPEN(pDst_filename, "wb");
if (!pFile)
return MZ_FALSE;
status = mz_zip_reader_extract_to_callback(
pZip, file_index, mz_zip_file_write_callback, pFile, flags);
if (MZ_FCLOSE(pFile) == EOF)
return MZ_FALSE;
#ifndef MINIZ_NO_TIME
if (status) {
mz_zip_set_file_times(pDst_filename, file_stat.m_time, file_stat.m_time);
}
#endif
return status;
}
#endif // #ifndef MINIZ_NO_STDIO
mz_bool mz_zip_reader_end(mz_zip_archive *pZip) {
if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) ||
(pZip->m_zip_mode != MZ_ZIP_MODE_READING))
return MZ_FALSE;
mz_zip_internal_state *pState = pZip->m_pState;
pZip->m_pState = NULL;
mz_zip_array_clear(pZip, &pState->m_central_dir);
mz_zip_array_clear(pZip, &pState->m_central_dir_offsets);
mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets);
#ifndef MINIZ_NO_STDIO
if (pState->m_pFile) {
MZ_FCLOSE(pState->m_pFile);
pState->m_pFile = NULL;
}
#endif // #ifndef MINIZ_NO_STDIO
pZip->m_pFree(pZip->m_pAlloc_opaque, pState);
pZip->m_zip_mode = MZ_ZIP_MODE_INVALID;
return MZ_TRUE;
}
#ifndef MINIZ_NO_STDIO
mz_bool mz_zip_reader_extract_file_to_file(mz_zip_archive *pZip,
const char *pArchive_filename,
const char *pDst_filename,
mz_uint flags) {
int file_index =
mz_zip_reader_locate_file(pZip, pArchive_filename, NULL, flags);
if (file_index < 0)
return MZ_FALSE;
return mz_zip_reader_extract_to_file(pZip, file_index, pDst_filename, flags);
}
#endif
// ------------------- .ZIP archive writing
#ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
static void mz_write_le16(mz_uint8 *p, mz_uint16 v) {
p[0] = (mz_uint8)v;
p[1] = (mz_uint8)(v >> 8);
}
static void mz_write_le32(mz_uint8 *p, mz_uint32 v) {
p[0] = (mz_uint8)v;
p[1] = (mz_uint8)(v >> 8);
p[2] = (mz_uint8)(v >> 16);
p[3] = (mz_uint8)(v >> 24);
}
#define MZ_WRITE_LE16(p, v) mz_write_le16((mz_uint8 *)(p), (mz_uint16)(v))
#define MZ_WRITE_LE32(p, v) mz_write_le32((mz_uint8 *)(p), (mz_uint32)(v))
mz_bool mz_zip_writer_init(mz_zip_archive *pZip, mz_uint64 existing_size) {
if ((!pZip) || (pZip->m_pState) || (!pZip->m_pWrite) ||
(pZip->m_zip_mode != MZ_ZIP_MODE_INVALID))
return MZ_FALSE;
if (pZip->m_file_offset_alignment) {
// Ensure user specified file offset alignment is a power of 2.
if (pZip->m_file_offset_alignment & (pZip->m_file_offset_alignment - 1))
return MZ_FALSE;
}
if (!pZip->m_pAlloc)
pZip->m_pAlloc = def_alloc_func;
if (!pZip->m_pFree)
pZip->m_pFree = def_free_func;
if (!pZip->m_pRealloc)
pZip->m_pRealloc = def_realloc_func;
pZip->m_zip_mode = MZ_ZIP_MODE_WRITING;
pZip->m_archive_size = existing_size;
pZip->m_central_directory_file_ofs = 0;
pZip->m_total_files = 0;
if (NULL == (pZip->m_pState = (mz_zip_internal_state *)pZip->m_pAlloc(
pZip->m_pAlloc_opaque, 1, sizeof(mz_zip_internal_state))))
return MZ_FALSE;
memset(pZip->m_pState, 0, sizeof(mz_zip_internal_state));
MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir,
sizeof(mz_uint8));
MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_central_dir_offsets,
sizeof(mz_uint32));
MZ_ZIP_ARRAY_SET_ELEMENT_SIZE(&pZip->m_pState->m_sorted_central_dir_offsets,
sizeof(mz_uint32));
return MZ_TRUE;
}
static size_t mz_zip_heap_write_func(void *pOpaque, mz_uint64 file_ofs,
const void *pBuf, size_t n) {
mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
mz_zip_internal_state *pState = pZip->m_pState;
mz_uint64 new_size = MZ_MAX(file_ofs + n, pState->m_mem_size);
if ((!n) ||
((sizeof(size_t) == sizeof(mz_uint32)) && (new_size > 0x7FFFFFFF)))
return 0;
if (new_size > pState->m_mem_capacity) {
void *pNew_block;
size_t new_capacity = MZ_MAX(64, pState->m_mem_capacity);
while (new_capacity < new_size)
new_capacity *= 2;
if (NULL == (pNew_block = pZip->m_pRealloc(
pZip->m_pAlloc_opaque, pState->m_pMem, 1, new_capacity)))
return 0;
pState->m_pMem = pNew_block;
pState->m_mem_capacity = new_capacity;
}
memcpy((mz_uint8 *)pState->m_pMem + file_ofs, pBuf, n);
pState->m_mem_size = (size_t)new_size;
return n;
}
mz_bool mz_zip_writer_init_heap(mz_zip_archive *pZip,
size_t size_to_reserve_at_beginning,
size_t initial_allocation_size) {
pZip->m_pWrite = mz_zip_heap_write_func;
pZip->m_pIO_opaque = pZip;
if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning))
return MZ_FALSE;
if (0 != (initial_allocation_size = MZ_MAX(initial_allocation_size,
size_to_reserve_at_beginning))) {
if (NULL == (pZip->m_pState->m_pMem = pZip->m_pAlloc(
pZip->m_pAlloc_opaque, 1, initial_allocation_size))) {
mz_zip_writer_end(pZip);
return MZ_FALSE;
}
pZip->m_pState->m_mem_capacity = initial_allocation_size;
}
return MZ_TRUE;
}
#ifndef MINIZ_NO_STDIO
static size_t mz_zip_file_write_func(void *pOpaque, mz_uint64 file_ofs,
const void *pBuf, size_t n) {
mz_zip_archive *pZip = (mz_zip_archive *)pOpaque;
mz_int64 cur_ofs = MZ_FTELL64(pZip->m_pState->m_pFile);
if (((mz_int64)file_ofs < 0) ||
(((cur_ofs != (mz_int64)file_ofs)) &&
(MZ_FSEEK64(pZip->m_pState->m_pFile, (mz_int64)file_ofs, SEEK_SET))))
return 0;
return MZ_FWRITE(pBuf, 1, n, pZip->m_pState->m_pFile);
}
mz_bool mz_zip_writer_init_file(mz_zip_archive *pZip, const char *pFilename,
mz_uint64 size_to_reserve_at_beginning) {
MZ_FILE *pFile;
pZip->m_pWrite = mz_zip_file_write_func;
pZip->m_pIO_opaque = pZip;
if (!mz_zip_writer_init(pZip, size_to_reserve_at_beginning))
return MZ_FALSE;
if (NULL == (pFile = MZ_FOPEN(pFilename, "wb"))) {
mz_zip_writer_end(pZip);
return MZ_FALSE;
}
pZip->m_pState->m_pFile = pFile;
if (size_to_reserve_at_beginning) {
mz_uint64 cur_ofs = 0;
char buf[4096];
MZ_CLEAR_OBJ(buf);
do {
size_t n = (size_t)MZ_MIN(sizeof(buf), size_to_reserve_at_beginning);
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_ofs, buf, n) != n) {
mz_zip_writer_end(pZip);
return MZ_FALSE;
}
cur_ofs += n;
size_to_reserve_at_beginning -= n;
} while (size_to_reserve_at_beginning);
}
return MZ_TRUE;
}
#endif // #ifndef MINIZ_NO_STDIO
mz_bool mz_zip_writer_init_from_reader(mz_zip_archive *pZip,
const char *pFilename) {
mz_zip_internal_state *pState;
if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_READING))
return MZ_FALSE;
// No sense in trying to write to an archive that's already at the support max
// size
if ((pZip->m_total_files == 0xFFFF) ||
((pZip->m_archive_size + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
MZ_ZIP_LOCAL_DIR_HEADER_SIZE) > 0xFFFFFFFF))
return MZ_FALSE;
pState = pZip->m_pState;
if (pState->m_pFile) {
#ifdef MINIZ_NO_STDIO
pFilename;
return MZ_FALSE;
#else
// Archive is being read from stdio - try to reopen as writable.
if (pZip->m_pIO_opaque != pZip)
return MZ_FALSE;
if (!pFilename)
return MZ_FALSE;
pZip->m_pWrite = mz_zip_file_write_func;
if (NULL ==
(pState->m_pFile = MZ_FREOPEN(pFilename, "r+b", pState->m_pFile))) {
// The mz_zip_archive is now in a bogus state because pState->m_pFile is
// NULL, so just close it.
mz_zip_reader_end(pZip);
return MZ_FALSE;
}
#endif // #ifdef MINIZ_NO_STDIO
} else if (pState->m_pMem) {
// Archive lives in a memory block. Assume it's from the heap that we can
// resize using the realloc callback.
if (pZip->m_pIO_opaque != pZip)
return MZ_FALSE;
pState->m_mem_capacity = pState->m_mem_size;
pZip->m_pWrite = mz_zip_heap_write_func;
}
// Archive is being read via a user provided read function - make sure the
// user has specified a write function too.
else if (!pZip->m_pWrite)
return MZ_FALSE;
// Start writing new files at the archive's current central directory
// location.
pZip->m_archive_size = pZip->m_central_directory_file_ofs;
pZip->m_zip_mode = MZ_ZIP_MODE_WRITING;
pZip->m_central_directory_file_ofs = 0;
return MZ_TRUE;
}
mz_bool mz_zip_writer_add_mem(mz_zip_archive *pZip, const char *pArchive_name,
const void *pBuf, size_t buf_size,
mz_uint level_and_flags) {
return mz_zip_writer_add_mem_ex(pZip, pArchive_name, pBuf, buf_size, NULL, 0,
level_and_flags, 0, 0);
}
typedef struct {
mz_zip_archive *m_pZip;
mz_uint64 m_cur_archive_file_ofs;
mz_uint64 m_comp_size;
} mz_zip_writer_add_state;
static mz_bool mz_zip_writer_add_put_buf_callback(const void *pBuf, int len,
void *pUser) {
mz_zip_writer_add_state *pState = (mz_zip_writer_add_state *)pUser;
if ((int)pState->m_pZip->m_pWrite(pState->m_pZip->m_pIO_opaque,
pState->m_cur_archive_file_ofs, pBuf,
len) != len)
return MZ_FALSE;
pState->m_cur_archive_file_ofs += len;
pState->m_comp_size += len;
return MZ_TRUE;
}
static mz_bool mz_zip_writer_create_local_dir_header(
mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size,
mz_uint16 extra_size, mz_uint64 uncomp_size, mz_uint64 comp_size,
mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags,
mz_uint16 dos_time, mz_uint16 dos_date) {
(void)pZip;
memset(pDst, 0, MZ_ZIP_LOCAL_DIR_HEADER_SIZE);
MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_SIG_OFS, MZ_ZIP_LOCAL_DIR_HEADER_SIG);
MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_VERSION_NEEDED_OFS, method ? 20 : 0);
MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_BIT_FLAG_OFS, bit_flags);
MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_METHOD_OFS, method);
MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_TIME_OFS, dos_time);
MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILE_DATE_OFS, dos_date);
MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_CRC32_OFS, uncomp_crc32);
MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_COMPRESSED_SIZE_OFS, comp_size);
MZ_WRITE_LE32(pDst + MZ_ZIP_LDH_DECOMPRESSED_SIZE_OFS, uncomp_size);
MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_FILENAME_LEN_OFS, filename_size);
MZ_WRITE_LE16(pDst + MZ_ZIP_LDH_EXTRA_LEN_OFS, extra_size);
return MZ_TRUE;
}
static mz_bool mz_zip_writer_create_central_dir_header(
mz_zip_archive *pZip, mz_uint8 *pDst, mz_uint16 filename_size,
mz_uint16 extra_size, mz_uint16 comment_size, mz_uint64 uncomp_size,
mz_uint64 comp_size, mz_uint32 uncomp_crc32, mz_uint16 method,
mz_uint16 bit_flags, mz_uint16 dos_time, mz_uint16 dos_date,
mz_uint64 local_header_ofs, mz_uint32 ext_attributes) {
(void)pZip;
mz_uint16 version_made_by = 10 * MZ_VER_MAJOR + MZ_VER_MINOR;
version_made_by |= (MZ_PLATFORM << 8);
memset(pDst, 0, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE);
MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_SIG_OFS, MZ_ZIP_CENTRAL_DIR_HEADER_SIG);
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_VERSION_MADE_BY_OFS, version_made_by);
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_VERSION_NEEDED_OFS, method ? 20 : 0);
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_BIT_FLAG_OFS, bit_flags);
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_METHOD_OFS, method);
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_TIME_OFS, dos_time);
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILE_DATE_OFS, dos_date);
MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_CRC32_OFS, uncomp_crc32);
MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS, comp_size);
MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_DECOMPRESSED_SIZE_OFS, uncomp_size);
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_FILENAME_LEN_OFS, filename_size);
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_EXTRA_LEN_OFS, extra_size);
MZ_WRITE_LE16(pDst + MZ_ZIP_CDH_COMMENT_LEN_OFS, comment_size);
MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_EXTERNAL_ATTR_OFS, ext_attributes);
MZ_WRITE_LE32(pDst + MZ_ZIP_CDH_LOCAL_HEADER_OFS, local_header_ofs);
return MZ_TRUE;
}
static mz_bool mz_zip_writer_add_to_central_dir(
mz_zip_archive *pZip, const char *pFilename, mz_uint16 filename_size,
const void *pExtra, mz_uint16 extra_size, const void *pComment,
mz_uint16 comment_size, mz_uint64 uncomp_size, mz_uint64 comp_size,
mz_uint32 uncomp_crc32, mz_uint16 method, mz_uint16 bit_flags,
mz_uint16 dos_time, mz_uint16 dos_date, mz_uint64 local_header_ofs,
mz_uint32 ext_attributes) {
mz_zip_internal_state *pState = pZip->m_pState;
mz_uint32 central_dir_ofs = (mz_uint32)pState->m_central_dir.m_size;
size_t orig_central_dir_size = pState->m_central_dir.m_size;
mz_uint8 central_dir_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE];
// No zip64 support yet
if ((local_header_ofs > 0xFFFFFFFF) ||
(((mz_uint64)pState->m_central_dir.m_size +
MZ_ZIP_CENTRAL_DIR_HEADER_SIZE + filename_size + extra_size +
comment_size) > 0xFFFFFFFF))
return MZ_FALSE;
if (!mz_zip_writer_create_central_dir_header(
pZip, central_dir_header, filename_size, extra_size, comment_size,
uncomp_size, comp_size, uncomp_crc32, method, bit_flags, dos_time,
dos_date, local_header_ofs, ext_attributes))
return MZ_FALSE;
if ((!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_dir_header,
MZ_ZIP_CENTRAL_DIR_HEADER_SIZE)) ||
(!mz_zip_array_push_back(pZip, &pState->m_central_dir, pFilename,
filename_size)) ||
(!mz_zip_array_push_back(pZip, &pState->m_central_dir, pExtra,
extra_size)) ||
(!mz_zip_array_push_back(pZip, &pState->m_central_dir, pComment,
comment_size)) ||
(!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets,
&central_dir_ofs, 1))) {
// Try to push the central directory array back into its original state.
mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size,
MZ_FALSE);
return MZ_FALSE;
}
return MZ_TRUE;
}
static mz_bool mz_zip_writer_validate_archive_name(const char *pArchive_name) {
// Basic ZIP archive filename validity checks: Valid filenames cannot start
// with a forward slash, cannot contain a drive letter, and cannot use
// DOS-style backward slashes.
if (*pArchive_name == '/')
return MZ_FALSE;
while (*pArchive_name) {
if ((*pArchive_name == '\\') || (*pArchive_name == ':'))
return MZ_FALSE;
pArchive_name++;
}
return MZ_TRUE;
}
static mz_uint
mz_zip_writer_compute_padding_needed_for_file_alignment(mz_zip_archive *pZip) {
mz_uint32 n;
if (!pZip->m_file_offset_alignment)
return 0;
n = (mz_uint32)(pZip->m_archive_size & (pZip->m_file_offset_alignment - 1));
return (pZip->m_file_offset_alignment - n) &
(pZip->m_file_offset_alignment - 1);
}
static mz_bool mz_zip_writer_write_zeros(mz_zip_archive *pZip,
mz_uint64 cur_file_ofs, mz_uint32 n) {
char buf[4096];
memset(buf, 0, MZ_MIN(sizeof(buf), n));
while (n) {
mz_uint32 s = MZ_MIN(sizeof(buf), n);
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_file_ofs, buf, s) != s)
return MZ_FALSE;
cur_file_ofs += s;
n -= s;
}
return MZ_TRUE;
}
mz_bool mz_zip_writer_add_mem_ex(mz_zip_archive *pZip,
const char *pArchive_name, const void *pBuf,
size_t buf_size, const void *pComment,
mz_uint16 comment_size,
mz_uint level_and_flags, mz_uint64 uncomp_size,
mz_uint32 uncomp_crc32) {
mz_uint32 ext_attributes = 0;
mz_uint16 method = 0, dos_time = 0, dos_date = 0;
mz_uint level, num_alignment_padding_bytes;
mz_uint64 local_dir_header_ofs, cur_archive_file_ofs, comp_size = 0;
size_t archive_name_size;
mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE];
tdefl_compressor *pComp = NULL;
mz_bool store_data_uncompressed;
mz_zip_internal_state *pState;
if ((int)level_and_flags < 0)
level_and_flags = MZ_DEFAULT_LEVEL;
level = level_and_flags & 0xF;
store_data_uncompressed =
((!level) || (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA));
if ((!pZip) || (!pZip->m_pState) ||
(pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || ((buf_size) && (!pBuf)) ||
(!pArchive_name) || ((comment_size) && (!pComment)) ||
(pZip->m_total_files == 0xFFFF) || (level > MZ_UBER_COMPRESSION))
return MZ_FALSE;
local_dir_header_ofs = cur_archive_file_ofs = pZip->m_archive_size;
pState = pZip->m_pState;
if ((!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) && (uncomp_size))
return MZ_FALSE;
// No zip64 support yet
if ((buf_size > 0xFFFFFFFF) || (uncomp_size > 0xFFFFFFFF))
return MZ_FALSE;
if (!mz_zip_writer_validate_archive_name(pArchive_name))
return MZ_FALSE;
#ifndef MINIZ_NO_TIME
{
time_t cur_time;
time(&cur_time);
mz_zip_time_t_to_dos_time(cur_time, &dos_time, &dos_date);
}
#endif // #ifndef MINIZ_NO_TIME
archive_name_size = strlen(pArchive_name);
if (archive_name_size > 0xFFFF)
return MZ_FALSE;
num_alignment_padding_bytes =
mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);
// no zip64 support yet
if ((pZip->m_total_files == 0xFFFF) ||
((pZip->m_archive_size + num_alignment_padding_bytes +
MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
comment_size + archive_name_size) > 0xFFFFFFFF))
return MZ_FALSE;
if ((archive_name_size) && (pArchive_name[archive_name_size - 1] == '/')) {
// Set DOS Subdirectory attribute bit.
ext_attributes |= 0x10;
// Subdirectories cannot contain data.
if ((buf_size) || (uncomp_size))
return MZ_FALSE;
}
// Try to do any allocations before writing to the archive, so if an
// allocation fails the file remains unmodified. (A good idea if we're doing
// an in-place modification.)
if ((!mz_zip_array_ensure_room(pZip, &pState->m_central_dir,
MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
archive_name_size + comment_size)) ||
(!mz_zip_array_ensure_room(pZip, &pState->m_central_dir_offsets, 1)))
return MZ_FALSE;
if ((!store_data_uncompressed) && (buf_size)) {
if (NULL == (pComp = (tdefl_compressor *)pZip->m_pAlloc(
pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor))))
return MZ_FALSE;
}
if (!mz_zip_writer_write_zeros(pZip, cur_archive_file_ofs,
num_alignment_padding_bytes +
sizeof(local_dir_header))) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
return MZ_FALSE;
}
local_dir_header_ofs += num_alignment_padding_bytes;
if (pZip->m_file_offset_alignment) {
MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) ==
0);
}
cur_archive_file_ofs +=
num_alignment_padding_bytes + sizeof(local_dir_header);
MZ_CLEAR_OBJ(local_dir_header);
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name,
archive_name_size) != archive_name_size) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
return MZ_FALSE;
}
cur_archive_file_ofs += archive_name_size;
if (!(level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)) {
uncomp_crc32 =
(mz_uint32)mz_crc32(MZ_CRC32_INIT, (const mz_uint8 *)pBuf, buf_size);
uncomp_size = buf_size;
if (uncomp_size <= 3) {
level = 0;
store_data_uncompressed = MZ_TRUE;
}
}
if (store_data_uncompressed) {
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pBuf,
buf_size) != buf_size) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
return MZ_FALSE;
}
cur_archive_file_ofs += buf_size;
comp_size = buf_size;
if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)
method = MZ_DEFLATED;
} else if (buf_size) {
mz_zip_writer_add_state state;
state.m_pZip = pZip;
state.m_cur_archive_file_ofs = cur_archive_file_ofs;
state.m_comp_size = 0;
if ((tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state,
tdefl_create_comp_flags_from_zip_params(
level, -15, MZ_DEFAULT_STRATEGY)) !=
TDEFL_STATUS_OKAY) ||
(tdefl_compress_buffer(pComp, pBuf, buf_size, TDEFL_FINISH) !=
TDEFL_STATUS_DONE)) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
return MZ_FALSE;
}
comp_size = state.m_comp_size;
cur_archive_file_ofs = state.m_cur_archive_file_ofs;
method = MZ_DEFLATED;
}
pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
pComp = NULL;
// no zip64 support yet
if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF))
return MZ_FALSE;
if (!mz_zip_writer_create_local_dir_header(
pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size,
comp_size, uncomp_crc32, method, 0, dos_time, dos_date))
return MZ_FALSE;
if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header,
sizeof(local_dir_header)) != sizeof(local_dir_header))
return MZ_FALSE;
if (!mz_zip_writer_add_to_central_dir(
pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment,
comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0,
dos_time, dos_date, local_dir_header_ofs, ext_attributes))
return MZ_FALSE;
pZip->m_total_files++;
pZip->m_archive_size = cur_archive_file_ofs;
return MZ_TRUE;
}
#ifndef MINIZ_NO_STDIO
mz_bool mz_zip_writer_add_file(mz_zip_archive *pZip, const char *pArchive_name,
const char *pSrc_filename, const void *pComment,
mz_uint16 comment_size, mz_uint level_and_flags,
mz_uint32 ext_attributes) {
mz_uint uncomp_crc32 = MZ_CRC32_INIT, level, num_alignment_padding_bytes;
mz_uint16 method = 0, dos_time = 0, dos_date = 0;
#ifndef MINIZ_NO_TIME
time_t file_modified_time;
#endif
mz_uint64 local_dir_header_ofs, cur_archive_file_ofs, uncomp_size = 0,
comp_size = 0;
size_t archive_name_size;
mz_uint8 local_dir_header[MZ_ZIP_LOCAL_DIR_HEADER_SIZE];
MZ_FILE *pSrc_file = NULL;
if ((int)level_and_flags < 0)
level_and_flags = MZ_DEFAULT_LEVEL;
level = level_and_flags & 0xF;
if ((!pZip) || (!pZip->m_pState) ||
(pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) || (!pArchive_name) ||
((comment_size) && (!pComment)) || (level > MZ_UBER_COMPRESSION))
return MZ_FALSE;
local_dir_header_ofs = cur_archive_file_ofs = pZip->m_archive_size;
if (level_and_flags & MZ_ZIP_FLAG_COMPRESSED_DATA)
return MZ_FALSE;
if (!mz_zip_writer_validate_archive_name(pArchive_name))
return MZ_FALSE;
archive_name_size = strlen(pArchive_name);
if (archive_name_size > 0xFFFF)
return MZ_FALSE;
num_alignment_padding_bytes =
mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);
// no zip64 support yet
if ((pZip->m_total_files == 0xFFFF) ||
((pZip->m_archive_size + num_alignment_padding_bytes +
MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE +
comment_size + archive_name_size) > 0xFFFFFFFF))
return MZ_FALSE;
#ifndef MINIZ_NO_TIME
memset(&file_modified_time, 0, sizeof(file_modified_time));
if (!mz_zip_get_file_modified_time(pSrc_filename, &file_modified_time))
return MZ_FALSE;
mz_zip_time_t_to_dos_time(file_modified_time, &dos_time, &dos_date);
#endif
pSrc_file = MZ_FOPEN(pSrc_filename, "rb");
if (!pSrc_file)
return MZ_FALSE;
MZ_FSEEK64(pSrc_file, 0, SEEK_END);
uncomp_size = MZ_FTELL64(pSrc_file);
MZ_FSEEK64(pSrc_file, 0, SEEK_SET);
if (uncomp_size > 0xFFFFFFFF) {
// No zip64 support yet
MZ_FCLOSE(pSrc_file);
return MZ_FALSE;
}
if (uncomp_size <= 3)
level = 0;
if (!mz_zip_writer_write_zeros(pZip, cur_archive_file_ofs,
num_alignment_padding_bytes +
sizeof(local_dir_header))) {
MZ_FCLOSE(pSrc_file);
return MZ_FALSE;
}
local_dir_header_ofs += num_alignment_padding_bytes;
if (pZip->m_file_offset_alignment) {
MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) ==
0);
}
cur_archive_file_ofs +=
num_alignment_padding_bytes + sizeof(local_dir_header);
MZ_CLEAR_OBJ(local_dir_header);
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pArchive_name,
archive_name_size) != archive_name_size) {
MZ_FCLOSE(pSrc_file);
return MZ_FALSE;
}
cur_archive_file_ofs += archive_name_size;
if (uncomp_size) {
mz_uint64 uncomp_remaining = uncomp_size;
void *pRead_buf =
pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1, MZ_ZIP_MAX_IO_BUF_SIZE);
if (!pRead_buf) {
MZ_FCLOSE(pSrc_file);
return MZ_FALSE;
}
if (!level) {
while (uncomp_remaining) {
mz_uint n = (mz_uint)MZ_MIN(MZ_ZIP_MAX_IO_BUF_SIZE, uncomp_remaining);
if ((MZ_FREAD(pRead_buf, 1, n, pSrc_file) != n) ||
(pZip->m_pWrite(pZip->m_pIO_opaque, cur_archive_file_ofs, pRead_buf,
n) != n)) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
MZ_FCLOSE(pSrc_file);
return MZ_FALSE;
}
uncomp_crc32 =
(mz_uint32)mz_crc32(uncomp_crc32, (const mz_uint8 *)pRead_buf, n);
uncomp_remaining -= n;
cur_archive_file_ofs += n;
}
comp_size = uncomp_size;
} else {
mz_bool result = MZ_FALSE;
mz_zip_writer_add_state state;
tdefl_compressor *pComp = (tdefl_compressor *)pZip->m_pAlloc(
pZip->m_pAlloc_opaque, 1, sizeof(tdefl_compressor));
if (!pComp) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
MZ_FCLOSE(pSrc_file);
return MZ_FALSE;
}
state.m_pZip = pZip;
state.m_cur_archive_file_ofs = cur_archive_file_ofs;
state.m_comp_size = 0;
if (tdefl_init(pComp, mz_zip_writer_add_put_buf_callback, &state,
tdefl_create_comp_flags_from_zip_params(
level, -15, MZ_DEFAULT_STRATEGY)) !=
TDEFL_STATUS_OKAY) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
MZ_FCLOSE(pSrc_file);
return MZ_FALSE;
}
for (;;) {
size_t in_buf_size =
(mz_uint32)MZ_MIN(uncomp_remaining, MZ_ZIP_MAX_IO_BUF_SIZE);
tdefl_status status;
if (MZ_FREAD(pRead_buf, 1, in_buf_size, pSrc_file) != in_buf_size)
break;
uncomp_crc32 = (mz_uint32)mz_crc32(
uncomp_crc32, (const mz_uint8 *)pRead_buf, in_buf_size);
uncomp_remaining -= in_buf_size;
status = tdefl_compress_buffer(pComp, pRead_buf, in_buf_size,
uncomp_remaining ? TDEFL_NO_FLUSH
: TDEFL_FINISH);
if (status == TDEFL_STATUS_DONE) {
result = MZ_TRUE;
break;
} else if (status != TDEFL_STATUS_OKAY)
break;
}
pZip->m_pFree(pZip->m_pAlloc_opaque, pComp);
if (!result) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
MZ_FCLOSE(pSrc_file);
return MZ_FALSE;
}
comp_size = state.m_comp_size;
cur_archive_file_ofs = state.m_cur_archive_file_ofs;
method = MZ_DEFLATED;
}
pZip->m_pFree(pZip->m_pAlloc_opaque, pRead_buf);
}
MZ_FCLOSE(pSrc_file);
pSrc_file = NULL;
// no zip64 support yet
if ((comp_size > 0xFFFFFFFF) || (cur_archive_file_ofs > 0xFFFFFFFF))
return MZ_FALSE;
if (!mz_zip_writer_create_local_dir_header(
pZip, local_dir_header, (mz_uint16)archive_name_size, 0, uncomp_size,
comp_size, uncomp_crc32, method, 0, dos_time, dos_date))
return MZ_FALSE;
if (pZip->m_pWrite(pZip->m_pIO_opaque, local_dir_header_ofs, local_dir_header,
sizeof(local_dir_header)) != sizeof(local_dir_header))
return MZ_FALSE;
if (!mz_zip_writer_add_to_central_dir(
pZip, pArchive_name, (mz_uint16)archive_name_size, NULL, 0, pComment,
comment_size, uncomp_size, comp_size, uncomp_crc32, method, 0,
dos_time, dos_date, local_dir_header_ofs, ext_attributes))
return MZ_FALSE;
pZip->m_total_files++;
pZip->m_archive_size = cur_archive_file_ofs;
return MZ_TRUE;
}
#endif // #ifndef MINIZ_NO_STDIO
mz_bool mz_zip_writer_add_from_zip_reader(mz_zip_archive *pZip,
mz_zip_archive *pSource_zip,
mz_uint file_index) {
mz_uint n, bit_flags, num_alignment_padding_bytes;
mz_uint64 comp_bytes_remaining, local_dir_header_ofs;
mz_uint64 cur_src_file_ofs, cur_dst_file_ofs;
mz_uint32
local_header_u32[(MZ_ZIP_LOCAL_DIR_HEADER_SIZE + sizeof(mz_uint32) - 1) /
sizeof(mz_uint32)];
mz_uint8 *pLocal_header = (mz_uint8 *)local_header_u32;
mz_uint8 central_header[MZ_ZIP_CENTRAL_DIR_HEADER_SIZE];
size_t orig_central_dir_size;
mz_zip_internal_state *pState;
void *pBuf;
const mz_uint8 *pSrc_central_header;
if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING))
return MZ_FALSE;
if (NULL ==
(pSrc_central_header = mz_zip_reader_get_cdh(pSource_zip, file_index)))
return MZ_FALSE;
pState = pZip->m_pState;
num_alignment_padding_bytes =
mz_zip_writer_compute_padding_needed_for_file_alignment(pZip);
// no zip64 support yet
if ((pZip->m_total_files == 0xFFFF) ||
((pZip->m_archive_size + num_alignment_padding_bytes +
MZ_ZIP_LOCAL_DIR_HEADER_SIZE + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE) >
0xFFFFFFFF))
return MZ_FALSE;
cur_src_file_ofs =
MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS);
cur_dst_file_ofs = pZip->m_archive_size;
if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs,
pLocal_header, MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
return MZ_FALSE;
if (MZ_READ_LE32(pLocal_header) != MZ_ZIP_LOCAL_DIR_HEADER_SIG)
return MZ_FALSE;
cur_src_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE;
if (!mz_zip_writer_write_zeros(pZip, cur_dst_file_ofs,
num_alignment_padding_bytes))
return MZ_FALSE;
cur_dst_file_ofs += num_alignment_padding_bytes;
local_dir_header_ofs = cur_dst_file_ofs;
if (pZip->m_file_offset_alignment) {
MZ_ASSERT((local_dir_header_ofs & (pZip->m_file_offset_alignment - 1)) ==
0);
}
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pLocal_header,
MZ_ZIP_LOCAL_DIR_HEADER_SIZE) !=
MZ_ZIP_LOCAL_DIR_HEADER_SIZE)
return MZ_FALSE;
cur_dst_file_ofs += MZ_ZIP_LOCAL_DIR_HEADER_SIZE;
n = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_FILENAME_LEN_OFS) +
MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_EXTRA_LEN_OFS);
comp_bytes_remaining =
n + MZ_READ_LE32(pSrc_central_header + MZ_ZIP_CDH_COMPRESSED_SIZE_OFS);
if (NULL ==
(pBuf = pZip->m_pAlloc(pZip->m_pAlloc_opaque, 1,
(size_t)MZ_MAX(sizeof(mz_uint32) * 4,
MZ_MIN(MZ_ZIP_MAX_IO_BUF_SIZE,
comp_bytes_remaining)))))
return MZ_FALSE;
while (comp_bytes_remaining) {
n = (mz_uint)MZ_MIN(MZ_ZIP_MAX_IO_BUF_SIZE, comp_bytes_remaining);
if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf,
n) != n) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
return MZ_FALSE;
}
cur_src_file_ofs += n;
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
return MZ_FALSE;
}
cur_dst_file_ofs += n;
comp_bytes_remaining -= n;
}
bit_flags = MZ_READ_LE16(pLocal_header + MZ_ZIP_LDH_BIT_FLAG_OFS);
if (bit_flags & 8) {
// Copy data descriptor
if (pSource_zip->m_pRead(pSource_zip->m_pIO_opaque, cur_src_file_ofs, pBuf,
sizeof(mz_uint32) * 4) != sizeof(mz_uint32) * 4) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
return MZ_FALSE;
}
n = sizeof(mz_uint32) * ((MZ_READ_LE32(pBuf) == 0x08074b50) ? 4 : 3);
if (pZip->m_pWrite(pZip->m_pIO_opaque, cur_dst_file_ofs, pBuf, n) != n) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
return MZ_FALSE;
}
// cur_src_file_ofs += n;
cur_dst_file_ofs += n;
}
pZip->m_pFree(pZip->m_pAlloc_opaque, pBuf);
// no zip64 support yet
if (cur_dst_file_ofs > 0xFFFFFFFF)
return MZ_FALSE;
orig_central_dir_size = pState->m_central_dir.m_size;
memcpy(central_header, pSrc_central_header, MZ_ZIP_CENTRAL_DIR_HEADER_SIZE);
MZ_WRITE_LE32(central_header + MZ_ZIP_CDH_LOCAL_HEADER_OFS,
local_dir_header_ofs);
if (!mz_zip_array_push_back(pZip, &pState->m_central_dir, central_header,
MZ_ZIP_CENTRAL_DIR_HEADER_SIZE))
return MZ_FALSE;
n = MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_FILENAME_LEN_OFS) +
MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_EXTRA_LEN_OFS) +
MZ_READ_LE16(pSrc_central_header + MZ_ZIP_CDH_COMMENT_LEN_OFS);
if (!mz_zip_array_push_back(
pZip, &pState->m_central_dir,
pSrc_central_header + MZ_ZIP_CENTRAL_DIR_HEADER_SIZE, n)) {
mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size,
MZ_FALSE);
return MZ_FALSE;
}
if (pState->m_central_dir.m_size > 0xFFFFFFFF)
return MZ_FALSE;
n = (mz_uint32)orig_central_dir_size;
if (!mz_zip_array_push_back(pZip, &pState->m_central_dir_offsets, &n, 1)) {
mz_zip_array_resize(pZip, &pState->m_central_dir, orig_central_dir_size,
MZ_FALSE);
return MZ_FALSE;
}
pZip->m_total_files++;
pZip->m_archive_size = cur_dst_file_ofs;
return MZ_TRUE;
}
mz_bool mz_zip_writer_finalize_archive(mz_zip_archive *pZip) {
mz_zip_internal_state *pState;
mz_uint64 central_dir_ofs, central_dir_size;
mz_uint8 hdr[MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE];
if ((!pZip) || (!pZip->m_pState) || (pZip->m_zip_mode != MZ_ZIP_MODE_WRITING))
return MZ_FALSE;
pState = pZip->m_pState;
// no zip64 support yet
if ((pZip->m_total_files > 0xFFFF) ||
((pZip->m_archive_size + pState->m_central_dir.m_size +
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIZE) > 0xFFFFFFFF))
return MZ_FALSE;
central_dir_ofs = 0;
central_dir_size = 0;
if (pZip->m_total_files) {
// Write central directory
central_dir_ofs = pZip->m_archive_size;
central_dir_size = pState->m_central_dir.m_size;
pZip->m_central_directory_file_ofs = central_dir_ofs;
if (pZip->m_pWrite(pZip->m_pIO_opaque, central_dir_ofs,
pState->m_central_dir.m_p,
(size_t)central_dir_size) != central_dir_size)
return MZ_FALSE;
pZip->m_archive_size += central_dir_size;
}
// Write end of central directory record
MZ_CLEAR_OBJ(hdr);
MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_SIG_OFS,
MZ_ZIP_END_OF_CENTRAL_DIR_HEADER_SIG);
MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_NUM_ENTRIES_ON_DISK_OFS,
pZip->m_total_files);
MZ_WRITE_LE16(hdr + MZ_ZIP_ECDH_CDIR_TOTAL_ENTRIES_OFS, pZip->m_total_files);
MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_SIZE_OFS, central_dir_size);
MZ_WRITE_LE32(hdr + MZ_ZIP_ECDH_CDIR_OFS_OFS, central_dir_ofs);
if (pZip->m_pWrite(pZip->m_pIO_opaque, pZip->m_archive_size, hdr,
sizeof(hdr)) != sizeof(hdr))
return MZ_FALSE;
#ifndef MINIZ_NO_STDIO
if ((pState->m_pFile) && (MZ_FFLUSH(pState->m_pFile) == EOF))
return MZ_FALSE;
#endif // #ifndef MINIZ_NO_STDIO
pZip->m_archive_size += sizeof(hdr);
pZip->m_zip_mode = MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED;
return MZ_TRUE;
}
mz_bool mz_zip_writer_finalize_heap_archive(mz_zip_archive *pZip, void **pBuf,
size_t *pSize) {
if ((!pZip) || (!pZip->m_pState) || (!pBuf) || (!pSize))
return MZ_FALSE;
if (pZip->m_pWrite != mz_zip_heap_write_func)
return MZ_FALSE;
if (!mz_zip_writer_finalize_archive(pZip))
return MZ_FALSE;
*pBuf = pZip->m_pState->m_pMem;
*pSize = pZip->m_pState->m_mem_size;
pZip->m_pState->m_pMem = NULL;
pZip->m_pState->m_mem_size = pZip->m_pState->m_mem_capacity = 0;
return MZ_TRUE;
}
mz_bool mz_zip_writer_end(mz_zip_archive *pZip) {
mz_zip_internal_state *pState;
mz_bool status = MZ_TRUE;
if ((!pZip) || (!pZip->m_pState) || (!pZip->m_pAlloc) || (!pZip->m_pFree) ||
((pZip->m_zip_mode != MZ_ZIP_MODE_WRITING) &&
(pZip->m_zip_mode != MZ_ZIP_MODE_WRITING_HAS_BEEN_FINALIZED)))
return MZ_FALSE;
pState = pZip->m_pState;
pZip->m_pState = NULL;
mz_zip_array_clear(pZip, &pState->m_central_dir);
mz_zip_array_clear(pZip, &pState->m_central_dir_offsets);
mz_zip_array_clear(pZip, &pState->m_sorted_central_dir_offsets);
#ifndef MINIZ_NO_STDIO
if (pState->m_pFile) {
MZ_FCLOSE(pState->m_pFile);
pState->m_pFile = NULL;
}
#endif // #ifndef MINIZ_NO_STDIO
if ((pZip->m_pWrite == mz_zip_heap_write_func) && (pState->m_pMem)) {
pZip->m_pFree(pZip->m_pAlloc_opaque, pState->m_pMem);
pState->m_pMem = NULL;
}
pZip->m_pFree(pZip->m_pAlloc_opaque, pState);
pZip->m_zip_mode = MZ_ZIP_MODE_INVALID;
return status;
}
#ifndef MINIZ_NO_STDIO
mz_bool mz_zip_add_mem_to_archive_file_in_place(
const char *pZip_filename, const char *pArchive_name, const void *pBuf,
size_t buf_size, const void *pComment, mz_uint16 comment_size,
mz_uint level_and_flags) {
mz_bool status, created_new_archive = MZ_FALSE;
mz_zip_archive zip_archive;
struct MZ_FILE_STAT_STRUCT file_stat;
MZ_CLEAR_OBJ(zip_archive);
if ((int)level_and_flags < 0)
level_and_flags = MZ_DEFAULT_LEVEL;
if ((!pZip_filename) || (!pArchive_name) || ((buf_size) && (!pBuf)) ||
((comment_size) && (!pComment)) ||
((level_and_flags & 0xF) > MZ_UBER_COMPRESSION))
return MZ_FALSE;
if (!mz_zip_writer_validate_archive_name(pArchive_name))
return MZ_FALSE;
if (MZ_FILE_STAT(pZip_filename, &file_stat) != 0) {
// Create a new archive.
if (!mz_zip_writer_init_file(&zip_archive, pZip_filename, 0))
return MZ_FALSE;
created_new_archive = MZ_TRUE;
} else {
// Append to an existing archive.
if (!mz_zip_reader_init_file(&zip_archive, pZip_filename,
level_and_flags |
MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY))
return MZ_FALSE;
if (!mz_zip_writer_init_from_reader(&zip_archive, pZip_filename)) {
mz_zip_reader_end(&zip_archive);
return MZ_FALSE;
}
}
status =
mz_zip_writer_add_mem_ex(&zip_archive, pArchive_name, pBuf, buf_size,
pComment, comment_size, level_and_flags, 0, 0);
// Always finalize, even if adding failed for some reason, so we have a valid
// central directory. (This may not always succeed, but we can try.)
if (!mz_zip_writer_finalize_archive(&zip_archive))
status = MZ_FALSE;
if (!mz_zip_writer_end(&zip_archive))
status = MZ_FALSE;
if ((!status) && (created_new_archive)) {
// It's a new archive and something went wrong, so just delete it.
int ignoredStatus = MZ_DELETE_FILE(pZip_filename);
(void)ignoredStatus;
}
return status;
}
void *mz_zip_extract_archive_file_to_heap(const char *pZip_filename,
const char *pArchive_name,
size_t *pSize, mz_uint flags) {
int file_index;
mz_zip_archive zip_archive;
void *p = NULL;
if (pSize)
*pSize = 0;
if ((!pZip_filename) || (!pArchive_name))
return NULL;
MZ_CLEAR_OBJ(zip_archive);
if (!mz_zip_reader_init_file(&zip_archive, pZip_filename,
flags |
MZ_ZIP_FLAG_DO_NOT_SORT_CENTRAL_DIRECTORY))
return NULL;
if ((file_index = mz_zip_reader_locate_file(&zip_archive, pArchive_name, NULL,
flags)) >= 0)
p = mz_zip_reader_extract_to_heap(&zip_archive, file_index, pSize, flags);
mz_zip_reader_end(&zip_archive);
return p;
}
#endif // #ifndef MINIZ_NO_STDIO
#endif // #ifndef MINIZ_NO_ARCHIVE_WRITING_APIS
#endif // #ifndef MINIZ_NO_ARCHIVE_APIS
#ifdef __cplusplus
}
#endif
#endif // MINIZ_HEADER_FILE_ONLY
/*
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>
*/